首页 > 实用范文 > 范文大全 > 高一数学最新人教版知识点6篇正文

《高一数学最新人教版知识点6篇》

时间:

高一是高中学习生涯中打好基础的一年,而高中数学也是比较难的一门学科。那么,如何学好高一数学呢?的小编精心为您带来了高一数学最新人教版知识点6篇,希望能够帮助到大家。

人教版高一数学知识点总结 篇1

多面体

1、棱柱

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质

(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形

2、棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

3、正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

人教版高一数学知识点总结 篇2

函数及其表示

1、函数的基本概念

(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.

(2)函数的定义域、值域

在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域。值域是集合B的子集。

(3)函数的三要素:定义域、值域和对应关系。

(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据。

2、函数的三种表示方法

表示函数的常用方法有:解析法、列表法、图象法。

3、映射的概念

一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

注意:

一个方法

求复合函数y=f(t),t=q(x)的定义域的方法:

①若y=f(t)的定义域为(a,b),则解不等式得a

两个防范

(1)解决函数问题,必须优先考虑函数的定义域。

(2)用换元法解题时,应注意换元前后的等价性。

三个要素

函数的三要素是:定义域、值域和对应关系。值域是由函数的定义域和对应关系所确定的。两个函数的定义域和对应关系完全一致时,则认为两个函数相等。函数是特殊的映射,映射f:A→B的三要素是两个集合A、B和对应关系f.

人教版高一数学知识点总结 篇3

空间直角坐标系定义:

过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位、这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴、通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。

1、右手直角坐标系

①右手直角坐标系的建立规则:x轴、y轴、z轴互相垂直,分别指向右手的拇指、食指、中指;

②已知点的坐标P(x,y,z)作点的方法与步骤(路径法):

沿x轴正方向(x>0时)或负方向(x<0时)移动|x|个单位,再沿y轴正方向(y>0时)或负方向(y<0时)移动|y|个单位,最后沿x轴正方向(z>0时)或负方向(z<>

③已知点的位置求坐标的方法:

过P作三个平面分别与x轴、y轴、z轴垂直于A,B,C,点A,B,C在x轴、y轴、z轴的坐标分别是a,b,c则(a,b,c)就是点P的坐标。

2、在x轴上的点分别可以表示为(a,0,0),(0,b,0),(0,0,c)。

在坐标平面xOy,xOz,yOz内的点分别可以表示为(a,b,0),(a,0,c),(0,b,c)。

3、点P(a,b,c)关于x轴的对称点的坐标为(a,-b,-c);

点P(a,b,c)关于y轴的对称点的坐标为(-a,b,-c);

点P(a,b,c)关于z轴的对称点的坐标为(-a,-b,c);

点P(a,b,c)关于坐标平面xOy的对称点为(a,b,-c);

点P(a,b,c)关于坐标平面xOz的对称点为(a,-b,c);

点P(a,b,c)关于坐标平面yOz的对称点为(-a,b,c);

点P(a,b,c)关于原点的对称点(-a,-b,-c)。

4、已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则线段PQ的中点坐标为

5、空间两点间的距离公式

已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则两点的距离为特殊点A(x,y,z)到原点O的距离为

6、以C(x0,y0,z0)为球心,r为半径的球面方程为

特殊地,以原点为球心,r为半径的球面方程为x2+y2+z2=r2

人教版高一数学知识点总结 篇4

1、多面体的结构特征

(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

2、旋转体的结构特征

(1)圆柱可以由矩形绕一边所在直线旋转一周得到。

(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。

(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

3、空间几何体的三视图

空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。

三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。

4、空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,基本步骤是:

(1)画几何体的底面

在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴。已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

(2)画几何体的高

在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

人教版高一数学知识点总结 篇5

元素与集合的关系有“属于”与“不属于”两种。

集合与集合之间的关系

某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个≠符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。』

人教版高一数学知识点总结 篇6

1:一般式:Ax+By+C=0(A、B不同时为0)适用于所有直线

K=-A/B,b=-C/B

A1/A2=B1/B2≠C1/C2←→两直线平行

A1/A2=B1/B2=C1/C2←→两直线重合

横截距a=-C/A

纵截距b=-C/B

2:点斜式:y-y0=k(x-x0)适用于不垂直于x轴的直线

表示斜率为k,且过(x0,y0)的直线

3:截距式:x/a+y/b=1适用于不过原点或不垂直于x轴、y轴的直线

表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线

4:斜截式:y=kx+b适用于不垂直于x轴的直线

表示斜率为k且y轴截距为b的直线

5:两点式:适用于不垂直于x轴、y轴的直线

表示过(x1,y1)和(x2,y2)的直线

(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

6:交点式:f1(x,y)m+f2(x,y)=0适用于任何直线

表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线

7:点平式:f(x,y)-f(x0,y0)=0适用于任何直线

表示过点(x0,y0)且与直线f(x,y)=0平行的直线

8:法线式:x·cosα+ysinα-p=0适用于不平行于坐标轴的直线

过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度

9:点向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)适用于任何直线

表示过点(x0,y0)且方向向量为(u,v)的直线

10:法向式:a(x-x0)+b(y-y0)=0适用于任何直线

表示过点(x0,y0)且与向量(a,b)垂直的直线

11:点到直线距离

点P(x0,y0)到直线Ι:Ax+By+C=0的距离

d=|Ax0+By0+C|/√A2+B2

两平行线之间距离

若两平行直线的方程分别为:

Ax+By+C1=OAx+By+C2=0则

这两条平行直线间的距离d为:

d=丨C1-C2丨/√(A2+B2)

12:各种不同形式的直线方程的局限性:

(1)点斜式和斜截式都不能表示斜率不存在的直线;

(2)两点式不能表示与坐标轴平行的直线;

(3)截距式不能表示与坐标轴平行或过原点的直线;

(4)直线方程的一般式中系数A、B不能同时为零。

13:位置关系

若直线L1:A1x+B1y+C1=0与直线L2:A2x+B2y+C2=0

1、当A1B2-A2B1≠0时,相交

2.A1/A2=B1/B2≠C1/C2,平行

3.A1/A2=B1/B2=C1/C2,重合

4.A1A2+B1B2=0,垂直