《高中数学必修三方差计算公式【优秀3篇】》
方差是指各个数据与平均数之差的平方的平均数,同时这也是高中数学必修三课本的重点内容,下面是小编精心为大家整理的高中数学必修三方差计算公式【优秀3篇】,您的肯定与分享是对小编最大的鼓励。
高中数学必修三统计知识点 篇1
分层抽样
(1)分层抽样(类型抽样):
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:
①先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
②先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
(2)分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准:
①以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
②以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
③以那些有明显分层区分的变量作为分层变量。
高中数学必修3统计知识点:系统抽样
(1)系统抽样(等距抽样或机械抽样):
把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。 K(抽样距离)=N(总体规模)/n(样本规模)
前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
简单随机抽样
(1)总体和样本
①在统计学中 , 把研究对象的全体叫做总体。②把每个研究对象叫做个体。③把总体中个体的总数叫做总体容量。
④为了研究总体 的有关性质,一般从总体中随机抽取一部分: x1,x2 , 。.。.研究,我们称它为样本。其中个体的个数称为样本容量。
(2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随
机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:
①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
(4)抽签法:
①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;
③对样本中的每一个个体进行测量或调查
程序框图
程序框图的概念:
程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形;
程序框图的构成:
一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字。
设计程序框图的步骤:
第一步,用自然语言表述算法步骤;
第二步,确定每一个算法步骤所包含的逻辑结构,并用相应的程序框图表示,得到该步骤的程序框图;
第三步,将所有步骤的程序框图用流程线连接起来,并加上终端框,得到表示整个算法的程序框图。
画程序框图的规则:
(1)使用标准的框图符号;
(2)框图一般按从上到下、从左到右的方向画;
(3)除判断框外,大多数程序框图中的程序框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;
(4)在图形符号内描述的语言要非常简练清楚。
几种重要的结构:
顺序结构、条件结构、循环结构。
高中数学必修三方差的计算公式 篇2
例1 两人的5次测验成绩如下:
X: 50,100,100,60,50 E(X)=72;
Y: 73, 70, 75,72,70 E(Y)=72。
平均成绩相同,但X 不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是
消除符号影响
方差即偏离平方的均值,记为D(X):
直接计算公式分离散型和连续型,具体为:
这里 是一个数。推导另一种计算公式
得到:“方差等于平方的均值减去均值的平方”。
其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。
高中数学必修三方差的性质 篇3
1、设C为常数,则D(C) = 0(常数无波动);
2.D(CX)=C2 D(X) (常数平方提取);
证:
特别地 D(-X) = D(X), D(-2X ) = 4D(X)(方差无负值)
3、若X 、Y 相互独立,则证:记则
前面两项恰为 D(X)和D(Y),第三项展开后为
当X、Y 相互独立时,
故第三项为零。
特别地
独立前提的逐项求和,可推广到有限项。
方差公式:
平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)
方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n