《解方程练习题及答案汇总 解方程题目大全及答案优秀6篇》
最新解方程练习题及答案汇总 篇1
在本课教学中,我主要采用小组合作学习,讨论的方式,让学生探究新知识,效果较好。
出示例题2,小组合作学习,讨论:①你是怎样理解图意的?②你是如何列方程的?③你是根据什么解方程的?④怎样检验方程的解是否正确?然后班交流讨论,展示学生的练习。指名回答,说说自己的分析。你对他的分析有什么要问的吗?教师总结解题关键。
教学例3时,让学生观察、分析,这道题与前面的练习题比较有什么区别?这道题可以怎样解?(先小组交流后个人解答)学生找出解题关键,培养一题多解的习惯与能力。
最后让学生做全课总结:今天学习了什么知识?解方程的关键是什么?
充分练习,进行思维训练,设计有趣的习题“帮小兔找家”:4x-12=203x=15x+7=152x+3×2=16
18-2x=215÷3+4x=25
巩固知识,激发兴趣。
最新解方程练习题及答案汇总 篇2
本节课讲的是七年级《数学》下册第八章第三节的第一课时——用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识。
(知识与技能)
1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;
2.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
(过程与方法)
学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答
(情感态度与价值观)
培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。
(教学重点)以方程组为工具分析,解决含有多个未知数的实际问题
(教学难点)确定解题策略,比较估算与精确计算
教法设计:回顾练习(5分钟),自主探究(5分钟),小组交流(5分钟),成果展示(10分钟),疑难点拨(10分钟),课堂运用(5分钟),小结发言(5分钟)。
教法设计意图
1.回顾练习
内容:
用适当的方法解方程组
(2)既是方程的解,又是方程的解是()
a.b.c.d.设计意图:巩固二元一次方程组的解法
2.自主探究
出示问题:养牛场原有30只母牛和15只小牛,一天约需用饲料675一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg.你能否通过计算检验他的估计?
为了解决这个问题,请认真看p.105页的内容.
思考:判断李大叔的估计是否正确的方法有2种:
(1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.
(2)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.
5分钟后谁能帮助李大叔解决问题,并能解决简单的实际问题?
学生按照自学指导看书,教师巡视,确保人人学得紧张高效.
设计意图:引导学生独立思考,培养自主学习的能力
3.小组交流
组内成员讨论各自的探究成果,对不足和错误进行补充与更正
最终提炼出最佳方法。
设计意图:培养合作学习的习惯
4.成果展示
各组在黑板上展示解题的方法(也就是设,列的步骤),然后由发言人讲解详细的做法。
设计意图:培养分析与解决问题能力
5.疑难点拨
(1)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量——列出方程组
(2)方法的多样——2种解法
设计意图:突破难点,打开思考路线,指导规范解题
6.课堂运用
实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.
捐款(元)
5
10
20
50
人数
6
7
设计意图:巩固解决实际问题的方法与步骤
7.小结发言
谈出本节课的收获与困惑
设计意图:通过各小组的小结,从审,设,列,解,答五步规范实际问题的解法。
作业安排一定要按照学生的层次性分类定量的进行(我一般将学生分成三类:特优生,优秀生,待优生)
设计意图:从不同层次有效的提高学生对知识的掌握程度
最新解方程练习题及答案汇总 篇3
教学内容
一元二次方程概念及一元二次方程一般式及有关概念。 教学目标
2
了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?应用一元二次方程概念解决一些简单题目。
1、通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义。 2.一元二次方程的一般形式及其有关概念。 3.解决一些概念性的题目。
4、通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。 重难点关键
1、?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。 2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念。 教学过程
一、复习引入
学生活动:列方程。 问题(1)古算趣题:“执竿进屋”
笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。 有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。 借问竿长多少数,谁人算出我佩服。
如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺, ?根据题意,?得________. 整理、化简,得:__________. 二、探索新知
学生活动:请口答下面问题。
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们次数是几次? (3)有等号吗?还是与多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程。 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程。
2
一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。
2
一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。
2
分析:一元二次方程的一般形式是ax+bx+c=0(a≠0)。因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等。
解:略
注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号。
2
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项。
22
分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式。 解:略
三、巩固练习
教材 练习1、2
补充练习:判断下列方程是否为一元二次方程?
(1)3x+2=5y-3 (2) x=4 (3) 3x-2
2
22
52 2 2
=0 (4) x-4=(x+2) (5) ax+bx+c=0 x
四、应用拓展
22
例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程。
2
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?≠0即可。
22
证明:m-8m+17=(m-4)+1
2
∵(m-4)≥0
22
∴(m-4)+10,即(m-4)+1≠0
∴不论m取何值,该方程都是一元二次方程。
2
? 练习: 1.方程(2a—4)x—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为
一元一次方程?
/4m/-4
2、当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程 五、归纳小结(学生总结,老师点评) 本节课要掌握:
2
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用。 六、布臵作业
第2课时 21.1 一元二次方程
教学内容
1、一元二次方程根的概念;
2、?根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目。 教学目标
了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题。 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根。同时应用以上的几个知识点解决一些具体问题。 重难点关键
1、重点:判定一个数是否是方程的根;
2、?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。
教学过程
一、复习引入
学生活动:请同学独立完成下列问题。
2
问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0
列表:
问题2列表:
3
老师点评(略) 二、探索新知 提问:(1)问题1中一元二次方程的解是多少?问题2?中一元二次方程的解是多少? (2)如果抛开实际问题,问题2中还有其它解吗?
22
老师点评:(1)问题1中x=2与x=10是x-8x+20=0的解,问题2中,x=4是x+7x-44=0的解。(2)如
果抛开实际问题,问题2中还有x=-11的解。
一元二次方程的解也叫做一元二次方程的根。
2
回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意。因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解。
2
例1.下面哪些数是方程2x+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可。
2
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的两根。
2
例2.若x=1是关于x的一元二次方程a x+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值
2 2
练习:关于x的一元二次方程(a-1) x+x+a-1=0的一个根为0,则求a的值
点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解。
例3.你能用以前所学的知识求出下列方程的根吗?
222
(1)x-64=0 (2)3x-6=0 (3)x-3x=0
分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义。 解:略
三、巩固练习
教材 思考题 练习1、2.
四、归纳小结(学生归纳,老师点评) 本节课应掌握:
(1)一元二次方程根的概念;
(2)要会判断一个数是否是一元二次方程的根;
(3)要会用一些方法求一元二次方程的根。(“夹逼”方法; 平方根的意义) 六、布臵作业
1、教材 复习巩固3、4 综合运用5、6、7 拓广探索8、9. 2.选用课时作业设计。
第3课时 21.2.1 配方法
教学内容
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程。 教学目标
理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题。
2
提出问题,列出缺一次项的一元二次方程ax+c=0,根据平方根的意义解出这个方程,然后知识迁移到解
2
a(ex+f)+c=0型的一元二次方程。 重难点关键
2
1、重点:运用开平方法解形如(x+m)=n(n≥0)的方程;领会降次──转化的数学思想。
22
2、难点与关键:通过根据平方根的意义解形如x=n,知识迁移到根据平方根的意义解形如(x+m)=n(n≥0)的方程。 教学过程
一、复习引入
学生活动:请同学们完成下列各题 问题1.填空
222222
(1)x-8x+______=(x-______);(2)9x+12x+_____=(3x+_____);(3)x+px+_____=(x+____)。 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(
p2p
) 。 22
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如
何转化成一次?怎样降次?以前学过哪些降次的方法? 二、探索新知
4
上面我们已经讲了x=9,根据平方根的意义,直接开平方得x=〒3,如果x换元为2t+1,即(2t+1)=9,能否也用直接开平方的方法求解呢? (学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=〒3 即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=--2
2 2 2
例1:解方程:(1)(2x-1)=5 (2)x+6x+9=2 (3)x-2x+4=-1
22
分析:很清楚,x+4x+4是一个完全平方公式,那么原方程就转化为(x+2)=1.
2
解:(2)由已知,得:(x+3)=2 直接开平方,得:x+3=
即
所以,方程的两根x1
x2
2
例2.市政府计划2年内将人均住房面积由现在的10m提高到14.4m,求每年人均住房面积增长率。 分析:设每年人均住房面积增长率为x.?一年后人均住房面积就应该是10+?10x=10(1+x);二年后人均
2
住房面积就应该是10(1+x)+10(1+x)x=10(1+x) 解:设每年人均住房面积增长率为x,
2
则:10(1+x)=14.4
2
(1+x)=1.44
直接开平方,得1+x=〒1.2 即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去。 所以,每年人均住房面积增长率应为20%。
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程。?我们把这种思想称为“降次转化思想”。
三、巩固练习
教材 练习。 四、应用拓展
例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?
分析:设该公司二、三月份营业额平均增长率为x,?那么二月份的营业额就应该是(1+x),三月份的营
2
业额是在二月份的基础上再增长的,应是(1+x)。 解:设该公司二、三月份营业额平均增长率为x.
2
那么1+(1+x)+(1+x)=3.31 把(1+x)当成一个数,配方得:
22
1232
)=2.56,即(x+)=2.56 22333
x+=〒1.6,即x+=1.6,x+=-1.6
222
(1+x+
方程的根为x1=10%,x2=-3.1
因为增长率为正数,
所以该公司二、三月份营业额平均增长率为10%。 五、归纳小结
本节课应掌握: 由应用直接开平方法解形如x=p(p≥0),那么x=
解形如(mx+n)=p(p≥0),那么mx+n=
六、布臵作业
1、教材 复习巩固1、2.
第4课时 22.2.1 配方法(1)
教学内容
间接即通过变形运用开平方法降次解方程。 教学目标
5
2
2
p0则方程无解
最新解方程练习题及答案汇总 篇4
知识与能力
结合操作活动进一步理解方程的意义。
过程与方法
会用含有未知数的等式表示等量关系。
情感、态度与价值观
感受方程与现实生活的密切联系,体验数学活动的探索性。
重点、难点
重点
理解方程的意义,会用含有未知数的等式表示等量关系。
难点
理解方程的意义。
教学准备
教师准备:
多媒体
学生准备:
练习本
教学过程
(一)新课导入:复习导入
1.出示:下面式子哪些是方程,并说明理由?
6+x=14 36-7=29 60+2370 8+x
x+414 ÷18=3 3x-12 5x+2x=63
2、写一个方程,然后在小组里交流,说说什么是方程。进一步巩固理解方程的意义。
设计意图:整理上节课学习的知识,进一步巩固学生对方程意义的理解。
(二)探究新知:
1.联系实际,应用拓展
师:看来同学们理解了方程的意义,掌握了方程的特征,其实方程就隐含在我们的生活中,人们发现在我们的衣食住行中,有很多问题都能用方程的方法来解决。试试看!(出示)
衣:妈妈带50元钱给我买了一件t恤后,还剩下26元。
食:小强去麦当劳,买了一袋薯条和一个l0元的汉堡,一共用了l5元。
住:同学们参加社会实践活动,3个人住一个房间,多少个房间能住102人?
行:公交车上有一些人到谢家湾站时,有13人下车,18人上车,车上还剩36人。
师:你想试哪一个?
生1:我想试“衣”。(生读题)
师:能用方程来表示吗?先写在练习本上,再想一想未知数代表的是什么?
生2:x+26=50
生3:50-x=26
师:这是方程。
生4:x代表t恤的价钱。
生5:我想试“食”。 我是这样写的x+10=15,x代表的是一袋薯条的价钱。
生6:我想试试“行”。
师:你能直接口答吗?
生7:x-13+18=36,x代表的是车上原有的人数。
生7:我想说最后一个“住”。102÷3=x,x代表的是房间数。
师:习惯上都把未知数写在等号的左边。也可以这样表示3x=102
师:刚才我们用方程表达了日常生活中的衣食住行问题,同样,也可以用日常生活来描述方程。
2.(出示)结合生活中的事例解释方程。
①+19=54
②x-14=36
③z-13十15=37
师:选择自己喜欢的来说。
生1:我想说第2个,我有一些钱,买学习用品花了14元,还剩36元。
师:真是个爱学习的好孩子。
生2:我想说第1个,我有一些零花钱,妈妈又给了我19元,一共有54元。
师:要学会合理使用零花钱。
生3:我想说第3个,公交车上有一些人到百货大楼站时,有10人下车,12人上车,车上还剩30人。
师:先下后上,文明乘车。
……
师:听了同学们的描述,老师认为大家确实理解了方程的意义,会把生活和数学联系起来学习了,很好!
设计意图:将数学知识与生活相联系,是学习数学的目的所在。也使学生学习数学的过程中形成技能。在教学中要保证每个学生参与学习活动,针对学习目标和教学重点,具有层次性和开放性,注重教学的实效性。
(三)巩固新知:
1.出示情境图,学生独立完成。说说列出方程的等量关系。
小丽背80首古诗,小芳背x首古诗,小芳说:你比我少背5首
学生能够列出:小芳背古诗首数-5=小丽背古诗首数
或:小芳背古诗首数-小丽背古诗首数=5
即:x-5=80
或:x-80=5
学生同桌交流,说说自己的想法,然后,全班订正。
2.出示自主练习3。
这是一个结合具体情境理解方程意义的题目。
先让学生独立填写等量关系式并列出方程,交流时,重点引导学生结合示意图说说数量关系。
设计意图:加深理解所学的知识,应用所学的知识灵活解决实际问题。
(四)达标反馈
1.下列各式那些是等式?
①45+32=77 ②5÷x=12 ③3x-4=22 ④2×21=42
⑤a+b=90 ⑥÷6
2.按要求写一写。
最新解方程练习题及答案汇总 篇5
本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。
1.本课主要对解方程进行了解题练习。通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!
2、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。
3、学生对于方程的书写格式掌握的很好,这一点很让人欣喜。
解方程是数学领域里一个关键的知识,在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。
而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。在教这单元之前,我一直困惑解方程要采用初中的“移项解题,还是运用书本的“等式性质解题,面对困惑,向老教师请教,原来还有第三种老教材的“四则运算之间的关系解题,方法多了,学生该吸收那种方法呢?困惑,学生该如何下手,运用“移项解题,学生对于这个概念或许不会系统清晰,但是“等式性质解题时,在碰到a-x=b和a÷x=b此类的方程,学生能如何下手,“四则运算之间的关系老教材的方式改变,必有他的理由,能用吗?
困惑!我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的衔接,而存在局部对学生会更困难,如a-x=b和a÷x=b此类的方程。
最新解方程练习题及答案汇总 篇6
本节课是青岛版四年级下册第一章,简易方程的解法是数学中比较重要的一种数与代数的解法。这部分内容是在用字母表示数、列方程的知识基础上进行的。教材密切联系学生已有的生活经验和学习经验,淡化抽象的数学概念,从不同角度提供有利于学生探索并理解简单方程解法,让学生体会生活中存在大量简单方程,从而引发学生的讨论和思考,并通过对具体问题的讨论,使学生认识成简单方程在生活中的'广泛存在,并为之后学习一般方程的解法奠定基础。
学生在学习本节课之前,已经学习过用字母简易的表示数,并能够根据已知条件快速列出简易方程,体会到字母表示数的简便性,能判断出等式的变量,为这节课的学习奠定了基础。在尊重学生已有的学习基础上,让学生在具体情境中体会简易方程。本节课的教学应注重通过对具体问题的讨论和分析,帮助学生直观的认识简易方程的意义,并进行求解。我所面对的学生心智尚未发育成熟,对抽象字母的理解应用能力正在提升中。
根据以上对教材的分析和学情的把握,我确定了如下三维教学目标:
(一)知识与技能
掌握简易方程解法,能够准确解出简易方程
(二)过程与方法
通过合作探究与天平常识的运用,自主得到求解简易方程的解法
(三)情感态度与价值观
在合作探究中,体会到数学学习的乐趣,加强交流合作能力
(一)教学重点:简易方程的解法。
(二)教学难点:快速求解建议方程。
只有明确了教学重难点,教学才能有起伏,课堂才不至于沉闷,教师才能有针对性的教学,从而确定相应的教学方法,本节课我运用到的教学方法如下:情景设置法,小组讨论法和讲授法。
(一)导入部分
首先是导入环节,在导入部分我运用设置情景法,展示一张画有小学生喜爱的***馆的卡通画,图片上在进行称量***的活动,并请学生根据图片自由提出问题,学生们会提出***有多重这样的问题。
设计意图:激发学生的学习兴趣,吸引学生的注意力,并能够引出本节课的课题——简易方程的解法。
(二)生成新知
新课展开时,我通过设置情景,结合生活实际。
首先,在天平的两边加上同等质量的物品,其中一边是砝码,一边是未知重量的牛奶一瓶加砝码。天平能够保持平衡,引导学生猜测未知重量的物体质量,列出等式:
x+50=300
其次,在天平两边分别减去一个50g的砝码天平继续保持平衡,引导学生列出相应方程:
x+50-50=300-50
从而给出等式的性质:等式两边同时加上或减去同一个数,等式依旧成立。并引导学生进行加砝码的自主尝试,锻炼学生的独立思考与动手操作能力。
对列出的第二个等式进行化简,得到:x=250,从而牛奶的重量为250g。
设计意图:通过直观的视觉冲击与自己动手操作参与课堂,既能激发学生的学习兴趣,又非常有利于学生理解等式的性质。
最后设置分小组讨论,得出简易方程的一般解法:方程的两边可以同时加上或减去一个数,使等式的一边只保留未知数,另一边为常数,即解得方程。并讲授使方程左右两边相等的未知数的值,叫做方程的解。求方程的过程叫做解方程。
给出一道基础题进行应用,注意强调等式两边“同时”加上或减去一个数。
设计意图:该问题有一定的难度,是从直观到抽象的过程,但通过学生的交流合作,思维碰撞,学生自己可以尝试着找到其中的结论,同时学生的合作交流能力得以锻炼提高。
(三)巩固提升
在巩固深化过程中,我采用逐层深入的方式进行巩固提升,并在布置课后练习时注意联系生活,只有将学习内容融合到生活中,回归到生活中才能培养学生学以致用的能力,养成学以致用的思维模式。
(四)小结作业
在小结作业时,我牢记将课堂还给学生,体现学生的主体地位的新课改理念,请学生来谈一谈这节课的收获,学生将会从知识与技能,过程与方法以及情感态度与价值观上进行总结,我将一步步引导学生进行情感上的升华。并请学生课后尝试解决生活中的简易方程的问题。
板书是一个微型教案,是课堂教学中师生双边活动的缩影,能直观的反映课堂教学的全过程,展示教学的总体思路。提纲式:简洁、清晰、明了。符合板书设计的目的性原则、直观性原则。这就是我的板书设计——
简易方程的解法
x+50=300
等式的性质:等式两边同时加上或减去同一个数,等式依旧成立。
x+50-50=300-50
解简易方程的一般步骤:方程的两边可以同时加上或减去一个数,使等式的一边只保留未知数,另一边为常数,即解得方程。