《初二数学试卷分析【最新3篇】》
初二数学试卷分析 篇1
(一) 成绩数据分析
本次参加数学考试的总人数33人,实际参考33人,及格率为100%,其中60分以上33人,成绩理想。
(二)试卷分析
(1)本次试卷满分120分,分为选择题,填空题,解答题三个部分 本试卷最大特点阅读量大, 对我们的学生来说难度较大。
(2)选择题部分是以期中考试之后的基础知识为主,注重学生能力的和基础知识的考察。
(3)填空题注重概念和能力的考察其中,14,15难度较大(4解答题围绕基础知识展开的能力考查题,这部分题阅读量大,例如:20,21,23,24对学生获取信息能力的考查比较多。
(三)投射出的问题及采取的措施
(1)投射出的问题:
1、学生的基础知识掌握不到位,但是还有一部分学生的基础比较差,对数学失去了信心。
2平时对阅读量题目练习少,学生对信息量大的题目不知如何下手。
3本学期的教学内容很多,而且有一些内容是学生不是很理解就如一次函数,期末复习的时间很少,这也是影响成绩的一个很重要的原因,一部分学生数学基础不是很好,再加上一部分学生的学习习惯较差,而且有一部分学生的学习态度不端正,导致了一部分学生的学习成绩不理想。
(2)措施:
1调动学生的积极性,增进师生间的情感交流,鼓励学生的创新思维,接受学生在前进中的错误并将其引导到正确的方向上。
2加强“双基”训练,努力提高学生的计算能力,几何推导能力以及分析问题和解决问题的能力。强化对概念的理解和应用,适当创设问题情境,使学生从根本上理解所学知识
3加强变式教学,纠正死啃书本的个别现象,从教师环节上强调砧研教材,吃透教材,用活教材,不拘一格地完成教学活动,增强学生学习的灵活性。
(四)对本次试题的评价和建议
评价:本次的试题投射出来以后命题方向加大对学生读取信息能力的考察,对今后的教学指明了方向。
建议:本次的数学试卷总的来说是一份不错的试卷,很有指导性。其中填空题15题3平行于同一直线两条直线平行这个命题,应该放到同一平面内,这个命题才正确。所以真命题为2个。
初二数学试卷分析 篇2
一、试卷特点
1、注意考察学生的综合能力的运用,具有一定的灵活性。
2、注重数学知识与实际相联系,即理论联系实际,具有创新意识。
二、学生答题分析
1、填空题:
填空题基本体现基础知识和基本技能。除第8题外,其它7道题得分率还是比较高的。
丢分多的是第8题
失分原因:
(1)本题需要学生估算到小数点后第三位,如果用计算器孩子还是能算出来的,但中招不让用计算器,所以平时考试也不让用计算器,孩子计算能力还没达到试题要求。
(2)算术平方根的估算新课标要求估算到十分位,本题需估算到千分位。
2、选择题:
难易程度适中。
丢分多的是第14题、16题
失分原因:
(1)14题是一道数形结合问题,初二学学生学习函数就是一个难点,对于数形结合还有待突破。
(2)16题,新教材删去了这部分内容,没了这种说法,虽集体备课时我们都拓展到了,但学生掌握还是不牢固。
三、解答题
17题60%以上的学生三角形全等还是比较熟练的,基本方法掌握很好,其他学生对两次全等还是被两次全等搞晕了。还需要加强基本方法,基本能力的训练。
18、19题是很好的一个题目,综合性较强,但不偏不怪,既能考查学生基本技能,又能考查学生基础知识掌握和知识的灵活性。但有部分学生在18题第2问中,由于审题不清,只说明了位置关系或者是数量关系,导致本题也有相当一部分同学没得到满分。
20、21题对初二学生来说确实是个挑战,有30位同学20题得到满意分,有40%学和21题得到满分。
22、23题注重数学知识与实际相联系,具有创新意识,符合新课标的要求。同学们也很喜欢这类问题,得分率也经较高。
四、试题意见
1、注重数学知识与实际相联系,即理论联系实际,具有创新意识。
2、填空第8题、选择16题、20题、21题超出了课标对四年制初二学生的要求。
3、初二下学期才能学到严格意义上的证明,17、19题不应有求证这个词。
4、试卷层次不明显,导致学生安排答题时间时有一定困难。最好把22、23两题放在20、21题之前,把20题做为压轴题,这样更符合初二学生考试特点。
5、 初二下学期教材内容,才学到了《平行线的有关证明》、《三角形的有关证明》,20题显然有点拔高新课标对初二上学期学生的要求。
初二数学试卷分析 篇3
一、试卷分析
本套试卷共6页,分值为100分。主要考察了八年级数学第十六章分式和十七章反比例函数的内容。其中包括:分式、分式的运算、分式的方程、反比例函数及其x质以及实际问题与反比例函数。试卷的总体难度适宜,能坚持以纲为纲,以本为本的原则,注重考察基础知识的掌握,覆盖面较广,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章。
第一题为选择题共十个小题,学生出错率较高的题有2、3、6、8、10。第2题涉及到分式的运算,题目难度适中,部分学生由于粗心马虎造成失分;第3题考查反比例函数x质的掌握,题目比较容易,学生对反比例函数的基本x质掌握不熟练导致出错;第6小题考查解分式方程中化分式方程为整式方程,本小题涉及到变号问题,学生做起来感觉吃力;第8和10小题涉及到实际问题,学生应用数学知识解决实际问题的能力较弱,所以出错率较高。第二题为填空题共七个小题,学生出错率较高的题是12和16。其中12题考查反比例函数的形式及其x质,出错的原因还是基础知识掌握不牢。16题涉及到增根,学生出错是由于对增根的理解不到位。
第三题为解答题共七个小题。18题考查分式的混合运算,19题考查解分式方程,题目难度较低,属于简单题。20题是先化简再求值。实质也是考查分式的混合运算,只是难度较18题略有提高,学生多在化简过程中出现错误。21题主要考查用待定系数法确定反比例函数的关系式,题目简单,学生一般会拿到分数。22题实质也是解分式方程,是对解分式方程能力的拓展和提高,有一定难度,学生出错率也较高。23题是列分式方程解应用题,难度适中,学生出错的原因与8和10相同。24小题考查反比例函数与实际问题,难度不大,一般都能做对。
二、学生分析
我所带班级是八年级一班,学生程度参差不齐,两级分化现象严重。学生学习氛围不太浓厚,部分学生学习态度不端正。程度较好的学生对题目的应变能力较弱,程度一般的学生对基础知识的掌握还有欠缺,对部分概念的理解不到位。学生普遍存在的问题就是解决实际问题能力较弱。
三、改进措施
在今后教学中应做如下改进:
1、回归课本,夯实基础
我们要加强基础知识教学和训练,使学生掌握必要的基础知识、基本技能和基本方法。同时加强学生对基本概念的理解,依据大纲要求,不脱离课本,加强训练,打好初中数学基础。
2、尊重学生个体差异,因材施教
学生程度良莠不齐,我们应该因材施教,特别是后进生,应给与更多帮助和关注,避免学生掉队的情况出现。同时鼓励优等生,使其不断进步。
3、关注生活,加强应用
使学生能用数学眼光认识世界,并能用数学知识和数学方法处理解决周围的实际问题。教学中要时常关注社会生活实际,编拟一些贴近生活,贴近实际,有着实际背景的数学应用x试题,引导学生学会阅读、审题、获取信息、解决问题。切实提高学生解决实际问题的能力。
4、强化训练,提高计算能力
在夯实基础的前提下,强化训练,不仅可以提高学生的解题计算能力,还能加深学生对基础
知识的理解。对例题、习题、练习题和复习题等,不能就题论题,要以题论法,以题为载体,变换试题,探究解法,研究与其他试题的联系与区别,挖掘出其中蕴涵的数学思想方法等,将试题的知识价值、教育价值一一解析。