首页 > 教学教案 > 初中教案 > 初一教案 > 初一的数学上册教案(6篇)正文

《初一的数学上册教案(6篇)》

时间:

作为一名无私奉献的老师,时常需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么什么样的教案才是好的呢?以下是人见人爱的小编分享的初一的数学上册教案(6篇),如果能帮助到您,小编的一切努力都是值得的。

例2】课本P20例 篇1

说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律。

总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加。

(三)应用迁移,巩固提高

【例3】 利用有理数的加法运算律计算,使运算简便。

(1)(+9)+(-7)+(+10)+(-3)+(-9)

(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)

(3)(+1)+(-2)+(+3)+(-4)+…+(+2003)+(-2004)

【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.

(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?

(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?

(四)总结反思,拓展升华

本节课我们探索了有理数的加法交换律和结合律。灵活运用加法的运算律会使运算简便。一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便。

(五)课堂跟踪反馈

夯实基础

1、运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( )

A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]

B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]

C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]

D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]

2、计算:(-2)+4+(-6)+8+…+(-98)+100.

初一的数学上册教案 篇2

学习目标:能借助直尺、圆规等工具,比较两条线段的长短。

能用圆规作一条线段等于已知线段。

重点:了解线段性质及比较方法,两点之间的距离的概念和线段中点的概念。

难点:比较线段长短的方法,线段中点的表示方法和应用。

学习过程:

课前热身:

辨别直线、射线、线段,并能用不同的方法表示一条线段。

自主学习:

阅读课本139页内容,完成下列问题,

1、在地面上有两点和,处放有一块骨头,三只不同颜色的小狗从点跑到点吃骨头,所经过的路线不同,请同学们辨别,哪只狗更聪明。

结论:

2、探究:作一条线段等于已知线段

方法:

3、探究:比较线段的长短

怎样比较两根筷子的长短。

方法:

4、探究:线段的中点

通过学生玩跷跷板,抽象出线段的中点

线段的中点的定义:

因为点在线段上,M是AB的中点

所以AM==0.5.

1分钟记忆:说说线段的性质、线段的中点

反馈检测:

判断:

1、两点之间的线段叫做这两点间的距离( )

2、如果点是线段的中点,那么( )

3、如果,那么点是的中点( )

选择:

1、两点之间线段的长度是( )

A.线段的中点B.线段最短

C.这两点间的距离D.线段的三等分点

2、在跳绳比赛中,要在两条长度相近的绳中挑选一条最长的绳子参 m. 加比赛,最简单的选择方法是( )

A.把两根绳子接在一起

B.把两条绳子一端对齐,然后拉直两条绳子,另一端在外面的即为长绳

C.用尺量绳长

D.没有办法挑选

3、已知线段,在直线上画线段,使,求线段的长。

实践应用

1、有一弯曲的灌渠流经一片农田,为了缩短流程,以减少分水的过分流失,现要将该灌渠改直,请问这应用的是什么结论?

4.2比较线段的长短课时练习

知识点1线段基本事实及两点间的距离

1、下列说法正确的是( )

A.两点之间直线最短

B.画出A、B两点间的距离

C.连接点A与点B的线段,叫做A、B两点间的距离

D.两点之间的距离是一个数,不是指线段本身

2、把弯曲的河道改直,能够缩短航程,这样做的道理是( )

A.两点之间,射线最短

B.两点确定一条直线

C.两点之间,线段最短

D.两点之间,直线最短

《4.2比较线段的长短》同步练习

2、(知识点1,2,4)下列说法正确的是( )

A.两点之间的所有连线中,直线最短

B.若P是线段AB的中点,则AP=BP

C.若AP=BP,则P是线段AB的中点

D.两点之间的线段叫作这两点之间的距离

3 。(题型二)把一段弯曲的公路改为直路,可以缩短路程,其理由是( )

A.两点之间线段最短B.两点确定一条直线

C.线段有两个端点D.线段可以比较大小

初一数学上册教案 篇3

《1.2有理数》教学设计

【学习目标】:

1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;

2、了解分类的标准 与集合的含义;

3、体验分类是数学上常用的处理问题方法;

【学习重点】:正确理解有理数的概念

【学习难点】:正确理解分类的标准和按照一定标准分类

《1.2.1有理数》同步练习含答案

5、对-3.14,下面说法正确的是(B)

A.是负数,不是分数

B.是负数,也是分数

C.是分数,不是有理数

D.不是分数,是有理数

《1.2有理数》同步练习含答案解析

8、如果a与1互为相反数,则|a|=( )

A.2 B.﹣2 C.1 D.﹣1

【考点】绝对值;相反数。

【分析】根据互为相反数的定义,知a=﹣1,从而求解。

互为相反数的定义:只有符号不同的两个数叫互为相反数。

【解答】解:根据a与1互为相反数,得

a=﹣1.

所以|a|=1.

故选C.

【点评】此题主要是考查了相反数的概念和绝对值的性质。

9、若|1﹣a|=a﹣1,则a的取值范围是( )

A.a>1 B.a≥1 C.a<1 D.a≤1

【考点】绝对值。

【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案。

【解答】解:∵|1﹣a|=a﹣1,

∴1﹣a≤0,

∴a≥1,

故选B.

【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大。

初一的数学上册教案 篇4

学习目标:

1、会进行包括小数或分数的有理数的加减混合运算。

2、熟练地进行有理数加减混合运算,并利用运算律简化运算。

3、会比较“加减法统一为加法”与“省略加号的代数和”两种计算形式。

学习重难点:

1、准确迅速地进行有理数的加减混合运算,加减运算法则和加法运算律。

2、减法直接转化为加法及混合运算的准确性,省略加号与括号的代数和计算。

学习过程:

任务一:温故知新

1、完成课本44页习题2、7的第1、2题,写在作业本上。

2、6有理数的加减混合运算》课时练习

一、选择题(共10题)

1、下列关于有理数的加法说法错误的是( )

A、同号两数相加,取相同的符号,并把绝对值相加

B、异号两数相加,绝对值相等时和为0

C、互为相反数的两数相加得0

D、绝对值不等时,取绝对值较小的数的符号作为和的符号

答案:D

解析:解答:D选项应该是有理数相加时,如果绝对值不等时,取绝对值较小的数的符号作为和的符号

分析:考查有理数的的加法法则

《2、6有理数的加减混合运算》同步练习

2、有一架直升飞机从海拔1000米的高原上起飞,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此时这架飞机离海平面多少米?

3、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5

这10名学生的总体重为多少?10名学生的平均体重为多少?

初一的数学上册教案 篇5

教学目标:

1、明白生活中存在着无数表示相反意义的量,能举例说明;

2、能体会引进负数的必要性和意义,建立正数和负数的数感。

重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

难点:对负数的意义的理解。

教学过程:

一、知识导向:本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

二、新课拆析:1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。如:0,1,2,3,…,,

2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。

如:汽车向东行驶3千米和向西行驶2千米

温度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。

一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C概括:我们把这一种新数,叫做负数,如:-3,-45,…过去学过的那些数(零除外)叫做正数,如:1,2.2…零既不是正数,也不是负数例:下面各数中,哪些数是正数,哪些数是负数,1,2.3,-5.5,68,-,0,-11,+123,…

三、阶梯训练:P18练习:1,2,3,4。

四、知识小结:

从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

五、作业巩固:

1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示; 2、分别举出几个正数与负数(最少6个)。 3、P20习题2.1:1题。

创设情景,导入新课 篇6

观察温度计:

你能从温度计看出4℃比-3℃高出多少度吗?

学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?

按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答。