《初中数学教案(最新7篇)》
作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写教案,编写教案助于积累教学经验,不断提高教学质量。教案应该怎么写才好呢?这次漂亮的小编为您带来了初中数学教案(最新7篇),您的肯定与分享是对小编最大的鼓励。
初中数学的教学设计 篇1
现代教学论研究指出,从本质上讲,学生学习的根本原因是问题。在数学课堂教学中,教师可根据不同的教学内容,围绕不同的教学目标,设计出符合学生实际的教学问题,围绕所设计的问题开展教学活动。这样,在课堂教学环节中,问题该怎样设计?围绕问题该怎样进行教学,才能使教学效率得以提高?这是摆在我们面前急需解决的问题。
本文将结合自己的教学实践,就问题设计的策略及反思等方面谈谈自己的看法。
一、注重问题情境的创设
著名数学家费赖登塔尔认为:“数学源于现实又寓于现实,数学教学应从学生所接触的客观实际中提出问题,然后升华为数学概念、运算法则或数学思想。”这一观念既反映了数学的本质,同时说明了在数学课堂教学中创设问题情境的重要性。比如,在《有理数的加法》一节的教学导入时,我首先出示了一周来本班的积分统计表(表中的得分用正数表示,失分用负数表示,)让学生观察:
星期 一 二 三 四 五 六 合计
积分 +3 -2 -4 -2 +2 +4
然后提出问题:“谁能帮我们班算出这一周的总积分呢?”结果我发现大多数同学能用“抵消”的方法统计出这一周本班的总积分。然后我出了一道算式题:“(+3)+(-2)+(-4)+(-2)=?”发现学生不知道该怎样算。当学生产生这样的认知冲突时我便引入了本节课要学习的内容,最后我用表中的数据分成了几种类型,如正数加正数、负数加负数、正数加负数等,展开新知学习,教学效果较以前有明显改观。
本节课成功之处在于:
(1)导入的情境问题贴近学生的现实,调动了学生的积极性。
(2)情境问题为后面的教学埋下了伏笔,引发了学生的认知冲突。当然,情境问题的创设不当,会直接影响教学。比如,在《函数》一节的教学时,我用游乐园中的摩天轮引入,当我提出问题:“同学们,当你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?”我发现学生几乎没有反应,只是偶尔听到:“摩天轮?”“很危险……”本来是一个很典型的函数问题,只因为农村学生对该情境的认识模糊,一时没有进入到虚拟情境中来,导致课堂开端出现“僵局”,也影响了后面的教学工作的胜利开展。
2、教学重点、难点处的问题设计
初中数学课堂教学中重点与难点的处理将直接影响教学效果。通过设计好的问题串可以强化重点与突破难点。例如,《结识抛物线》一节的教学重点就是做二次函数y=x2的图像并根据图像认识和理解函数的性质。而作图过程又是一个难点问题,要从所画的图像中发现并归纳性质,首先得画出较准确的函数图像。在学生画图像的过程中,我抓住学生的几种错误画法提出了三个问题让学生讨论交流:
(1)根据你画的图像,给自变量x任取一个值,函数y有唯一的值与它对应吗?
(2)自变量x的范围是什么?
(3)在0 (4)部分同学经过对x的小范围内的取值、描点与连线之后观察到了所画的图像是曲线型的,但是还有部分学生就是体验不到这种形状。在这种情况下,我用计算机演示,当所描出的点比较密集时所连的线是曲线而不是直线段,这样才消除了学生的一些错误认识。在随后的观察图像归纳性质的探索与交流活动中,学生乐于探索,主动交流,积极发表自己的想法,根据图像归纳出了好几条性质。这样,不但使重点得以突出、难点得到突破,而且发展了学生的思维。 3、例题或课堂练习中的问题设计 例题教学具有及时巩固知识和灵活运用知识的双重功能,随堂练习是检查学生的数学学习效果和培养学生思维的有效手段之一。数学课堂教学中,教师通过优选例题,精心设计层次分明的练习,能够让学生以积极的态度去思考并解决问题,获得问题解决的成就感和快乐感。例如笔者在《反比例函数的图像与性质》一节的教学中设计了一道这样的问题:已知A(-2,y1)、B(-1,y2)、C(2,y3)三点都在反比例函数y=k/x(k>0)图像上,(1)比较y1、y2、y3的大小关系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三点也在反比例函数y=k/x(k>0)的图像上,其中a 4、在学习反思中的问题设计 初中学生学习数学的方法相对欠缺,学生“重结论,轻过程”的现象较普遍,对学习结果的反思意识淡薄,自我评价不彻底,做错的题目一错再错。作为教师,在平时的教学中要注重引导,彻底分析错因,让学生在错题中有反思的机会。例如,在一元一次方程的教学中,我发现学生解含有分母的方程时很容易出错,针对学生做错的题目,我设计了如的表格: 通过引导学生对错因彻底分析与校正,学生明白了产生错误的真正原因是什么,认识到了自己的不足。然后我出了几道解方程的练习,结果发现,学生确实重视了错误,效果明显有所好转。 总之,在数学教学中,教学问题的设计确实是一种学问,是一种艺术。要让学生在实实在在的问题情境中去亲历体验,在对问题的分析、探索与交流的过程中主动思考,与人分享成果,来体验成功的'快乐,增强他们的自信心。 《余角和补角》第2课时教案 教学目标: 知识与能力 能正确运用角度表示方向,并能熟练运算和角有关的问题。 过程与方法 能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。 情感、态度、价值观 能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。 教学重点:方位角的表示方法。 教学难点:方位角的准确表示。 教学准备:预习书上有关内容 预习导学: 如图所示,请说出四条射线所表示的方位角? 教学过程; 一、创设情景,谈话导入 在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢? 二、精讲点拔,质疑问难 方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。 三、课堂活动,强化训练 例1如图:指出图中射线OA、OB所表示的方向。 (学生个别回答,学生点评) 例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位? (小组讨论,个别回答,教师总结) 例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。 (教师分析,一学生上黑板,学生点评) 四、延伸拓展,巩固内化 例4某哨兵上午8时测得一艘船的位置在哨所的。南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。 (1)请按比例尺1:200000画出图形。 (独立完成,一同学上黑板,学生点评) (2)通过测量计算,确定船航行的方向和进度。 (小组讨论,得出结论,代表发言) 五、布置作业、当堂反馈 练习:请使用量角器、刻度尺画出下列点的位置。 (1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。 (2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。 (3)点C在点O的西北方向上,同时在点B的正北方向上。 作业:书P1407、9 一、学情分析 学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。同时在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。 二、教学目标分析 教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。为此,本节课的教学目标是: 1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。 2、能利用尺规作角的和、差、倍。 3、能够通过尺规设计并绘制简单的图案。 4、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。 三、教学设计分析 1、回顾与思考 活动内容: (1)怎样利用没有刻度的直尺和圆规作一条线段等于已知线段? (2)练习:已知线段a,b,c,作一条线段m,使得m=a+b—c 活动目的: 通过回顾上节课学习的用尺规作线段,既达到了复习巩固,反馈落实的目的,同时熟练尺规的使用,积累活动经验,也为后面学习用尺规作角起到了铺垫的作用。 2、情境引入,探索发现 活动内容:如图2 教学目标 1笔寡生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值; 2迸嘌学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。 教学重点和难点 重点和难点:正确地求出代数式的值 课堂教学过程设计 一、从学生原有的认识结构提出问题 1庇么数式表示:(投影) (1)a与b的和的平方;(2)a,b两数的平方和; (3)a与b的和的50% 2庇糜镅孕鹗龃数式2n+10的意义 3倍杂诘2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影) 某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球? 若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢? 最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50蔽颐墙上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值闭饩褪潜窘诳挝颐墙要学习研究的内容 二、师生共同研究代数式的值的意义 1庇檬值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值 2苯岷仙鲜隼题,提出如下几个问题: (1)求代数式2x+10的值,必须给出什么条件? (2)代数式的值是由什么值的确定而确定的? 当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象 然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应 (3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢? 下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化) 例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值 解:当x=7,y=4,z=0时, x(2x-y+3z)=7×(2×7-4+3×0) =7×(14-4) =70 注意:如果代数式中省略乘号,代入后需添上乘号 例2根据下面a,b的值,求代数式a2-的值 (1)a=4,b=12,(2)a=1,b=1 解:(1)当a=4,b=12时, a2-=42-=16-3=13; (2)当a=1,b=1时, a2-=-= 注意(1)如果字母取值是分数,作乘方运算时要加括号; (2)注意书写格式,“当……时”的字样不要丢; (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果 三、课堂练习 1(1)当x=2时,求代数式x2-1的值; (2)当x=,y=时,求代数式x(x-y)的值 2钡盿=,b=时,求下列代数式的值: (1)(a+b)2;(2)(a-b)2 3钡眡=5,y=3时,求代数式的值 答案:1.(1)3;(2);2.(1);(2);3.。 四、师生共同小结 首先,请学生回答下面问题: 1北窘诳窝习了哪些内容? 2鼻蟠数式的值应分哪几步? 3痹“代入”这一步应注意什么” 其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的。 五、作业 当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b); 今天的内容就介绍到这里了。 知识技能目标 1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质; 2、利用反比例函数的图象解决有关问题。 过程性目标 1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质; 2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。 教学过程 一、创设情境 上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。 二、探究归纳 1、画出函数的图象。 分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。 解 1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值: 2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。 3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。 上述图象,通常称为双曲线(hyperbola)。 提问这两条曲线会与x轴、y轴相交吗?为什么? 学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。 学生讨论、交流以下问题,并将讨论、交流的结果回答问题。 1、这个函数的图象在哪两个象限?和函数的图象有什么不同? 2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定? 3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律? 反比例函数有下列性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 注 1、双曲线的两个分支与x轴和y轴没有交点; 2、双曲线的两个分支关于原点成中心对称。 以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义? 在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。 在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。 三、实践应用 例1若反比例函数的图象在第二、四象限,求m的值。 分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。 解由题意,得解得。 例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。 分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k0,所以直线与y轴的交点在x轴的上方。 解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。 例3已知反比例函数的图象过点(1,—2)。 (1)求这个函数的解析式,并画出图象; (2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上? 分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象; (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。 解(1)设:反比例函数的解析式为:(k≠0)。 而反比例函数的图象过点(1,—2),即当x=1时,y=—2。 所以,k=—2。 即反比例函数的解析式为:。 (2)点A(—5,m)在反比例函数图象上,所以, 点A的坐标为。 点A关于x轴的对称点不在这个图象上; 点A关于y轴的对称点不在这个图象上; 点A关于原点的对称点在这个图象上; 例4已知函数为反比例函数。 (1)求m的值; (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化? (3)当—3≤x≤时,求此函数的最大值和最小值。 解(1)由反比例函数的定义可知:解得,m=—2。 (2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。 (3)因为在第个象限内,y随x的增大而增大, 所以当x=时,y最大值=; 当x=—3时,y最小值=。 所以当—3≤x≤时,此函数的最大值为8,最小值为。 例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。 (1)写出用高表示长的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象。 解(1)因为100=5xy,所以。 (2)x>0。 (3)图象如下: 说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。 四、交流反思 本节课学习了画反比例函数的图象和探讨了反比例函数的性质。 1、反比例函数的图象是双曲线(hyperbola)。 2、反比例函数有如下性质: (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少; (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 五、检测反馈 1、在同一直角坐标系中画出下列函数的图象: (1);(2)。 2、已知y是x的反比例函数,且当x=3时,y=8,求: (1)y和x的函数关系式; (2)当时,y的值; (3)当x取何值时,? 3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。 4、已知反比例函数经过点A(2,—m)和B(n,2n),求: (1)m和n的值; (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0 一、教学目标 (一)知识教学点 1.使学生能利用公式解决简单的实际问题. 2.使学生理解公式与代数式的关系. (二)能力训练点 1.利用数学公式解决实际问题的能力. 2.利用已知的公式推导新公式的能力. (三)德育渗透点 数学来源于生产实践,又反过来服务于生产实践. (四)美育渗透点 数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美. 二、学法引导 1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点 2.学生学法:观察→分析→推导→计算 三、重点、难点、疑点及解决办法 1.重点:利用旧公式推导出新的图形的计算公式. 2.难点:同重点. 3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差. 四、课时安排 1课时 五、教具学具准备 投影仪,自制胶片。 六、师生互动活动设计 教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式. 七、教学步骤 (一)创设情景,复习引入 师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏. 在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题. 板书:公式 师:小学里学过哪些面积公式? 板书:S=ah (出示投影1)。解释三角形,梯形面积公式 【教法说明】让学生感知用割补法求图形的面积。 一、素质教育目标 (一)知识教学点 1.使学生理解多项式的概念. 2.使学生能准确地确定一个多项式的次数和项数. 3.能正确区分单项式和多项式. (二)能力训练点 通过区别单项式与多项式,培养学生发散思维. (三)德育渗透点 在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想. (四)美育渗透点 单项式和多项式在前二章,特别是第一章已有新接触,本节课来研究多项式的概念可谓水到渠成,体现了数学的结构美 二、学法引导 1.教学方法:采用对比法,以训练为主,注重尝试指导. 2.学生学法:观察分析→多项式有关概念→练习巩固 三、重点、难点、疑点及解决办法 1.重点:多项式的概念及单项式的联系与区别. 2.难点:多项式的次数的确定,以及多项式与单项式的联系与区别. 3.疑点:多项式中各项的符号问题. 四、课时安排 1课时 五、教具学具准备 投影仪或电脑、自制胶片. 六、师生互动活动设计 教师出示探索性练习,学生分析讨论得出多项式有关概念,教师出示巩固性练习,学生多种形式完成. 七、教学步骤 (一)复习引入,创设情境 师:上节课我们学习了单项式的有关概念,同学们看下面一些问题. (出示投影1) 1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数. , , ,2, , , , 2.圆的半径为 ,则半圆的面积为_____________,半圆的总长为_____________. 学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励. 【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容. 师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢? 学生活动:同座进行讨论,然后选代表回答. 师:谁能把1题中不是单项式的式子读出来?(师做相应板书) 学生活动:小组讨论, 、 , , 对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充. (二)探索新知,讲授新课 师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式. [板书]3.1整式(多项式) 学生活动:讨论归纳什么叫多项式.可让学生互相补充. 教师概括并板书 [板书]多项式:几个单项式的和叫多项式. 师:强调每个单项式的符号问题,使学生引起注意. (出示投影2) 练习:下裂代数式 , , , , , , , , 中,是多项式的有: ___________________________________________________________. 学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论. 【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识.多项式的概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正. 师:提出问题,多项式 、 , , 各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正. 师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中, 次数是1, 次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式. [板书] 学生活动:同桌讨论,, , ,应怎样称谓,然后找学生回答. 师:给予归纳,并做适当板书: [板书] 学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答. 根据学生回答,师归纳: 在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式.每一项包含它的符号,如 中, 这一项不是 .多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项. [板书] 【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力. (三)尝试反馈,巩固练习 (出示投影3) 1.填空: 2.填空: (1) 是_________次__________项式; 是_________次_________项式; 的常数项是___________. (2) 是_________次________项式,最高次数是___________,最高次项的系数是__________,常数项是___________. 学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正. 【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病.2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言. (四)归纳小结 师:今天我们学习了《整式》一节中“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数.前面我们还学习了单项式,掌握单项式时要注意它的系数和次数. 归纳:单项式和多项式统称为整式. [板书] 说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做了述板书,使所学知识纳入知识系统. 巩固练习: (出示投影4) 下列各代数式:0, , , , , , 中,单项式有__________,多项式有____________,整式有_____________. 学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏. 【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系. (五)变式训练,培养能力 (出示投影5) 1.单项式 , , 的和_________,它是__________次__________项式. 2. 是_______次________项式 是__________次_________项式,它的常数项_________. 3. 是________次________项式,最高次项是_________,最高次项的系数是_________,常数项是__________. 4. 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式). 学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言. 师:做肯定或否定,强调3题中最高次项的系数是 , 是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的. 【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识. 自编题目练习: 每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确. 【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力. 师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式. 学生活动:学生边回答师边板书,然后学生讨论是否符合要求. 【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力. 八、随堂练习 1.判断题 (1)-5不是多项式( ) (2) 是二次二项式( ) (3) 是二次三项式( ) (4) 是一次三项式( ) (5) 的最高次项系数是3( ) 2.填空题 (1)把上列代数式分别填在相应的括号里 , , ,0, , , ; ; ; ; . (2)如果代数式 是关于 的三次二项式则 , . 九、布置作业 (一)必做题:课本第149页习题3.1A组12. (二)选做题:课本第150页习题3.1B组3. 十、板书设计 随堂练习答案 1.√ × × √ × 2.(1)单项式 ,多项式 ; 整式 ; 二项式 ; 三次三项式 ; (2) , . 作业答案 教材P.149中A组12题:(1)三次二项式 (2)二次三项式 (3)一次二项式 (4)四次三项式初中数学优秀教案设计 篇2
初中数学教学设计 篇3
初中数学教案 篇4
初中数学教案 篇5
初中数学教学设计 篇6
初中数学教案 篇7