《最新初中数学教案.doc【最新5篇】》
作为一位杰出的教职工,通常需要用到教案来辅助教学,借助教案可以提高教学质量,收到预期的教学效果。我们应该怎么写教案呢?这里是整理的最新初中数学教案.doc【最新5篇】,如果能帮助到您,小编的一切努力都是值得的。
初中数学教案.doc 篇1
1、知识与技能
①相似三角形对应高的比,对应角的比,对应叫平分线的比和对应中线的比和相似比的关系。
②利用相似三角形的性质解决一些实际问题。
2、情感与态度
①相似三角形中对应线段的比和相似比的关系,培养学生的探索精神和合作意识。
②通过运用相似三角形的性质,增强学生的应用意识。
重点:相似三角形中对应线段比值的推倒,运用相似三角形的性质解决实际问题。
难点:相似三角形的性质的运用。
通过例题的分析讲解,让学生感受相似三角形的性质在实际生活中的应用。
在理解并掌握相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比的过程中,培养学生利用相似三角形的性质解决现实问题的意识和应用能力
引导启发式、课前准备、幻灯片
教师活动学生活动
一、创设问题情境,引入新课
带领学生复习相似多边形的性质及相似三角形的性质,并提出疑问“在两个相似三角形中,是否只有对应角相等,对应边成比例这个性质?”从而引导学生探究相似三角形的其他性质。
认真听课、思考、回答老师提出的问题。
二、新课讲解
1、做一做
以实际问题做引例,初步让学生感知相似三角形对应高的比和相似比的关系。
钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,图纸上的△abc表示该零件的横断面△abc,cd和cd分别是它们的高。
(1)各等于多少?
(2)△abc与△abc相似吗?如果相似,请说明理由,并指出它们的相似比、
(3)请你在图4-38中再找出一对相似三角形、
(4)等于多少?你是怎么做的?与同伴交流、
阅读课本材料,弄清题意,根据已有的经验积极思考,动手操作画图,在练习本上作答。
依次回答课本提出的4个问题并加以思考
2、议一议
根据上面的引例让学生猜测,证明相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比。
已知△abc∽△abc,△abc与△abc的相似比为k、
(1)如果cd和cd是它们的对应高,那么等于多少?
(2)如果cd和cd是它们的对应角平分线,那么等于多少?如果cd和cd是它们的对应中线呢?
学生经历观察,推证、讨论,交流后,独立回答。
3、教师归纳
总结相似三角形的性质:
相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。
学生理解、熟记。
归纳、类比加深对相似性质的理解
三、课堂练习:
例题讲解,利用相似三角形的性质解决一些问题。
如图所示,在等腰三角形abc中,底边bc=60cm,高ad=40cm,四边形pqrs是正方形。
(1)△asr与△abc相似吗?为什么?
(2)求正方形pqrs的边长。
阅读例题材料,弄懂题意,然后运用所学知识作答。写出解题过程。
四、探索活动:
如图,ad,ad分别是△abc和△abc的角平分线,且ab:ab=bd:bd=ad:ad,你认为△abc∽△abc吗?
针对此题,学生先独立思考,然后展开小组讨论,充分交流后作答。
五、课时小结
指导学生结合本节课的知识点,对学习过程进行总结。
本节课主要根据相似三角形的性质和判定判定推导了相似三角形的性质、相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比。
学生畅所欲言,谈学习的体会,遇到的困难以及获得的启发。
六、布置课后作业:
课后习题节选。
独立完成作业。
初中数学教案 篇2
教学目标:
1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。
2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。
3、通过对问题的探索研究,培养学生分析问题和解决问题的能力以及思维的灵活性。
4、培养学生大胆猜想、合理论证的科学精神。
教学重点:
探索并运用三角形中位线的性质。
教学难点:
运用转化思想解决有关问题。
教学方法:
创设情境——建立数学模型——应用——拓展提高
教学过程:
情境创设:测量不可达两点距离。
探索活动:
活动一:剪纸拼图。
操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形。
观察、猜想: 四边形BCFD是什么四边形。
探索: 如何说明四边形BCFD是平行四边形?
活动二:探索三角形中位线的性质。
应用
练习及解决情境问题。
例题教学
操作——猜想——验证
拓展:数学实验室
小结:布置作业。
初中数学教案 初中数学教案.doc 篇3
教学建议
知识结构
重难点分析
本节的重点是的性质和判定定理。是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。
本节的难点是性质的灵活应用。由于是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。
教法建议
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:
1、的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。
2、在现实中的实例较多,在讲解的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.
3、如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.
4、在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.
5、由于和的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.
6、在性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。
1.掌握概念,知道与平行四边形的关系.
2.掌握的性质.
3.通过运用知识解决具体问题,提高分析能力和观察能力.
4.通过教具的演示培养学生的学习兴趣.
5.根据平行四边形与矩形、的从属关系,通过画图向学生渗透集合思想.
6.通过性质的学习,体会的图形美.
观察分析讨论相结合的方法
1.教学重点:的性质定理.
2.教学难点:把的性质和直角三角形的知识综合应用.
3.疑点:与矩形的性质的区别.
1课时
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
【复习提问】
1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角.
3.矩形的一个角的平分线把较长的边分成、,求矩形的周长.
【引入新课】
我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,这时可将事先按课本中图4-38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出概念.
【讲解新课】
1.定义:有一组邻边相等的平行四边形叫做.
讲解这个定义时,要抓住概念的本质,应突出两条:
(1)强调是平行四边形.
(2)一组邻边相等.
2.的性质:
教师强调,既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊性质.
下面研究的性质:
师:同学们根据的定义结合图形猜一下有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析).
生:因为是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到.
性质定理1:的四条边都相等.
由的四条边都相等,根据平行四边形对角线互相平分,可以得到
性质定理2:的对角线互相垂直并且每一条对角线平分一组对角.
引导学生完成定理的规范证明.
师:观察右图,被对角线分成的四个直角三角形有什么关系?
生:全等.
师:它们的底和高和两条对角线有什么关系?
生:分别是两条对角线的一半.
师:如果设的两条对角线分别为、,则的面积是什么?
生:
教师指出当不易求出对角☆☆线长时,就用平行四边形面积的一般计算方法计算面积.
例2已知:如右图,是△的角平分线,交于,交于.
求证:四边形是.
(引导学生用定义来判定.)
例3已知的边长为,,对角线,相交于点,如右图,求这个的对角线长和面积.
(1)按教材的方法求面积.
(2)还可以引导学生求出△一边上的高,即的高,然后用平行四边形的面积公式计算的面积.
【总结、扩展】
1.小结:(打出投影)(图4)
(1)、平行四边形、四边形的从属关系:
(2)性质:图5
①具有平行四边形的所有性质.
②特有性质:四条边相等;对角线互相垂直,且平分每一组对角.
教材p158中6、7、8,p196中10
标题
定义……
性质例2…… 小结:
性质定理1:……例3…… ……
性质定理2:……
教材p151中1、2、3
补充
1.的两条对角线长分别是3和4,则周长和面积分别是___________、___________.
2.周长为80,一对角线为20,则相邻两角的度数为___________、____________.
初中数学教案 初中数学教案.doc 篇4
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本p75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
初中数学教案 初中数学教案.doc 篇5
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
一、试一试
1、设矩形花圃的垂直于墙的一边ab的长为xm,先取x的一些值,算出矩形的另一边bc的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
2、x的值是否可以任意取?有限定范围吗?
3、我们发现,当ab的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,
对于1.可让学生根据表中给出的ab的长,填出相应的bc的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当ab的长为5cm,bc的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。对于3,教师可提出问题,(1)当ab=xm时,bc长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:
1、商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2、如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3、若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
[(10-8-x);(100+100x)]
4、x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]
5、若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x)(100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0<x<10=化为:
y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20d(0≤x≤2)……………………(2)
三、观察;概括
1、教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及p1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2、二次函数定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1、(口答)下列函数中,哪些是二次函数?
(1)y=5x+1(2)y=4x2-1
(3)y=2x3-3x2(4)y=5x4-3x+1
2、p3练习第1,2题。
五、小结
1、请叙述二次函数的定义.
2、许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略