《初中数学教案模板范例【优秀9篇】》
一个好的教案要怎么写?教案的标准格式是什么呢?学而不思则罔,思而不学则殆,以下是小编帮大家收集的9篇初中数学教案模板的相关文章,希望可以帮助到有需要的朋友。
初中数学教学教案 篇1
圆柱、圆锥、圆台和球
总课题
空间几何体
总课时
第2课时
分课题
圆柱、圆锥、圆台和球
分课时
第2课时
目标
了解圆柱、圆锥、圆台和球的有关概念、认识圆柱、圆锥、圆台和球及其简单组合体的机构特征。
重点难点
圆柱、圆锥、圆台和球的概念的理解。
1引入新课
1、下面几何体有什么共同特点或生成规律?
这些几何体都可看做是一个平面图形绕某一直线旋转而成的。
2、圆柱、圆锥、圆台和球的'有关概念。
3、圆柱、圆锥、圆台和球的表示。
4、旋转体的有关概念。
1、例题剖析
例1
如图,将直角梯形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
例2指出图、图中的几何体是由哪些简单的几何体构成的、
图图
例3
直角三角形中,将三角形分别绕边,三边所在直线旋转一周,由此形成的几何体是哪一种简单的几何体?或由哪几种简单的几何体构成?
2、巩固练习
1、指出下列几何体分别由哪些简单几何体构成。
2、如图,将平行四边形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
3、充满气的车轮内胎可以通过什么图形旋转生成?
1、课堂小结
圆柱、圆锥、圆台和球的有关概念及图形特征。
2、课后训练
一基础题
1、下列几何体中不是旋转体的是()
2、图中的几何体可由一平面图形绕轴旋转形成,该平面图形是()
ABCD
3、用平行与圆柱底面的平面截圆柱,截面是_____________________________________.
4、_____________________可以看作圆柱的一个底面收缩为圆心时,形成的空间几何体、
5、用平行于圆锥底面的一平面去截此圆锥,则底面和截面间的部分的名称是_________。
6、如图是一个圆台,请标出它的底面、轴、母线,并指出它是怎样生成的。
二提高题
7、请指出图中的几何体是由哪些简单几何体构成的。
三能力题
8、如图,将直角梯形绕、边所在直线旋转一周,由此形成的几何体分别是由哪些简单几何体构成的?
ADCB图1A图2DBC
初中数学教案大全模板 篇2
学习目标
1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。
2、由坐标的变化探索新旧图形之间的变化。
重点
1、作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。
2、根据轴对称图形的`特点,已知轴一边的图形或坐标确定另一边的图形或坐标。
难点
体会极坐标和直角坐标思想,并能解决一些简单的问题
学习过程(导入、探究新知、即时练习、小结、达标检测、作业)
第一课时
学习过程:
一、旧知回顾:
1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。
2、坐标平面内点的坐标的表示方法____________。
3、各象限点的坐标的特征:
二、新知检索:
1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2),(0,0)并用线段依次连接,观察形成了什么图形
三、典例分析
例1、
(1)将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?
例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?
四、题组训练
1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。
(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?
(2)纵、横分别加3呢?
(3)纵、横分别变成原来的2倍呢?
归纳:图形坐标变化规律
1、平移规律:2、图形伸长与压缩:
第二课时
一、旧知回顾:
1、轴对称图形定义:如果一个图形沿着对折后两部分完全重合,这样的图形叫做轴对称图形。
中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形
二、新知检索:
1、如图,左边的鱼与右边的鱼关于y轴对称。
1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?
2、各个对应顶点的坐标有怎样的关系?
3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?
三、典例分析,如图所示,
1、右图的鱼是通过什么样的变换得到左图的鱼的。
2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。
3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系
四、题组练习
1、将坐标作如下变化时,图形将怎样变化?
①(x,y)(x,y+4)②(x,y)(x,y-2)③(x,y)(1/2x,y)
④(x,y)(3x,y)⑤(x,y)(x,1/2y)⑥(x,y)(3x,3y)
2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。
3、如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。
4、描出下图中枫叶图案关于x轴的轴对称图形的简图。
初中数学教学教案 篇3
教学目标
1、知识与技能
①相似三角形对应高的比,对应角的比,对应叫平分线的比和对应中线的比和相似比的关系。
②利用相似三角形的性质解决一些实际问题。
2、情感与态度
①相似三角形中对应线段的比和相似比的关系,培养学生的探索精神和合作意识。
②通过运用相似三角形的性质,增强学生的应用意识。
重点与难点
重点:相似三角形中对应线段比值的推倒,运用相似三角形的性质解决实际问题。
难点:相似三角形的性质的运用。
教学思考
通过例题的分析讲解,让学生感受相似三角形的性质在实际生活中的应用。
解决问题
在理解并掌握相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比的过程中,培养学生利用相似三角形的性质解决现实问题的意识和应用能力
教学方法
引导启发式、课前准备、幻灯片
教师活动学生活动
一、创设问题情境,引入新课
带领学生复习相似多边形的性质及相似三角形的性质,并提出疑问“在两个相似三角形中,是否只有对应角相等,对应边成比例这个性质?”从而引导学生探究相似三角形的其他性质。
认真听课、思考、回答老师提出的问题。
二、新课讲解
1、做一做
以实际问题做引例,初步让学生感知相似三角形对应高的比和相似比的关系。
钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,图纸上的△ABC表示该零件的横断面△ABC,CD和CD分别是它们的高。
(1)各等于多少?
(2)△ABC与△ABC相似吗?如果相似,请说明理由,并指出它们的相似比、
(3)请你在图4-38中再找出一对相似三角形、
(4)等于多少?你是怎么做的?与同伴交流、
阅读课本材料,弄清题意,根据已有的经验积极思考,动手操作画图,在练习本上作答。
依次回答课本提出的4个问题并加以思考
2、议一议
根据上面的引例让学生猜测,证明相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比。
已知△ABC∽△ABC,△ABC与△ABC的相似比为k、
(1)如果CD和CD是它们的对应高,那么等于多少?
(2)如果CD和CD是它们的对应角平分线,那么等于多少?如果CD和CD是它们的对应中线呢?
学生经历观察,推证、讨论,交流后,独立回答。
3、教师归纳
总结相似三角形的性质:
相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。
学生理解、熟记。
归纳、类比加深对相似性质的理解
三、课堂练习:
例题讲解,利用相似三角形的性质解决一些问题。
如图所示,在等腰三角形ABC中,底边BC=60cm,高AD=40cm,四边形PQRS是正方形。
(1)△ASR与△ABC相似吗?为什么?
(2)求正方形PQRS的边长。
阅读例题材料,弄懂题意,然后运用所学知识作答。写出解题过程。
四、探索活动:
如图,AD,AD分别是△ABC和△ABC的角平分线,且AB:AB=BD:BD=AD:AD,你认为△ABC∽△ABC吗?
针对此题,学生先独立思考,然后展开小组讨论,充分交流后作答。
五、课时小结
指导学生结合本节课的知识点,对学习过程进行总结。
本节课主要根据相似三角形的性质和判定判定推导了相似三角形的性质、相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比。
学生畅所欲言,谈学习的体会,遇到的困难以及获得的启发。
六、布置课后作业:
课后习题节选。
独立完成作业。
初中数学教案大全模板 篇4
一元一次方程——初中数学第一册教案(精选2篇)
一元一次方程——初中数学第一册篇1
一元一次方程的复习
复习目标:
(1)了解方程、一元一次方程以及方程的解等基本概念。
(2)会解一元一次方程。
(3)会根据具体问题中的数量关系列出一元一次方程并求解。
重点、难点:
1.重点:
一元一次方程及方程的解的基本概念。
一元一次方程的解法。
会用一元一次方程解决实际问题。
2.难点:
一元一次方程的解法的灵活应用。
寻找实际问题中的等量关系。
【典型例题】
例1.
分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。
在这里特别注意:未知数的次数及系数。
这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。
解:
例2.
分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。
此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。
解:
将m=1代入关于x的方程,得:
例3.
解:
注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。
例4.
分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。
解:
例5.
分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。
解:
注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。
解:
例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。
分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm
解一:设车的速度为xm/s
经检验,符合题意。
答:车的速度为20m/s。
解二:设车身的长度为xm
经检验,符合题意。
答:车的速度为(1000+200)/60=20m/s
例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票
售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?
分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。
解:设团体票共2a张,零售票共a张,零售票价x元
经检验,符合题意。
答:零售票价为19.2元。
【模拟试题】
一。填空题。
1.已知方程的解比关于x的方程的解大2,则_________。
2.关于x的方程的解为整数,则__________。
3.若是关于x的一元一次方程,则k=_________,x=_________。
4.若代数式与的值互为相反数,则m=_________。
5.一元一次方程的解为x=0,那么a、b应满足的条件是__________。
二。解方程。
1.
2.
3.
4.
三。列方程解应用题。
1.一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?
2.分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?
【试题答案】
一。填空题。
1. 2.
3.1,1 4. 5.
二。解方程。
1. 2.
3. 4.
三。列方程解应用题。
1.买364个鸡蛋
2.戴红帽子4人,黄帽子3人
一元一次方程的复习
复习目标:
(1)了解方程、一元一次方程以及方程的解等基本概念。
(2)会解一元一次方程。
(3)会根据具体问题中的数量关系列出一元一次方程并求解。
重点、难点:
1.重点:
一元一次方程及方程的解的基本概念。
一元一次方程的解法。
会用一元一次方程解决实际问题。
2.难点:
一元一次方程的解法的灵活应用。
寻找实际问题中的等量关系。
【典型例题】
例1.
分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。
在这里特别注意:未知数的次数及系数。
这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。
解:
例2.
分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。
此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。
解:
将m=1代入关于x的方程,得:
例3.
解:
注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。
例4.
分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。
解:
例5.
分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。
解:
注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。
解:
例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。
分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm
解一:设车的速度为xm/s
经检验,符合题意。
答:车的速度为20m/s。
解二:设车身的长度为xm
经检验,符合题意。
答:车的速度为(1000+200)/60=20m/s
例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票
售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?
分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。
解:设团体票共2a张,零售票共a张,零售票价x元
经检验,符合题意。
答:零售票价为19.2元。
【模拟试题】
一。填空题。
1.已知方程的解比关于x的方程的解大2,则_________。
2.关于x的方程的解为整数,则__________。
3.若是关于x的一元一次方程,则k=_________,x=_________。
4.若代数式与的值互为相反数,则m=_________。
5.一元一次方程的解为x=0,那么a、b应满足的条件是__________。
二。解方程。
1.
2.
3.
4.
三。列方程解应用题。
1.一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?
2.分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?
【试题答案】
一。填空题。
1. 2.
3.1,1 4. 5.
二。解方程。
1. 2.
3. 4.
三。列方程解应用题。
1.买364个鸡蛋
2.戴红帽子4人,黄帽子3人
一元一次方程——初中数学第一册教案篇2
一元一次方程
一、教学目标 :
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念
3、积累活动经验。
二、重点和难点
重点:归纳一元一次方程的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果=9,则 = ;如果2=9,则 =
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是( )
A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为、互为相反数则)
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为倒数 ,如:
(5)如果,则( )
A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )
A、 B、 C、 D、00
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )
A、+25=310 B、+(+25)=310 C、2[+(+25)]=310 D、[+(+25)]2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?
解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:
6、归纳方程、一元一次方程的概念
7、随堂练习PO151
8、达标测试
(1)下列式子中,属于方程的是( )
A、 B、 C、 D、
(2)下列方程中,属于一元一次方程的是( )
A、 B、 C、 D、
(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?
解:设甲队胜了场,则平了 场,依题意可列得方程:
解得=
答:甲队胜了 场,平了 场。
(4)根据条件“一个数比它的一半大2”可列得方程为
(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为
四、课外作业 P151习题5.1
一元一次方程
一、教学目标 :
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念
3、积累活动经验。
二、重点和难点
重点:归纳一元一次方程的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果=9,则 = ;如果2=9,则 =
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是( )
A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为、互为相反数则)
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为倒数 ,如:
(5)如果,则( )
A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )
A、 B、 C、 D、00
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )
A、+25=310 B、+(+25)=310 C、2[+(+25)]=310 D、[][+(+25)]2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?
解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:
6、归纳方程、一元一次方程的概念
7、随堂练习PO151
8、达标测试
(1)下列式子中,属于方程的是( )
A、 B、 C、 D、
(2)下列方程中,属于一元一次方程的是( )
A、 B、 C、 D、
(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?
解:设甲队胜了场,则平了 场,依题意可列得方程:
解得=
答:甲队胜了 场,平了 场。
(4)根据条件“一个数比它的一半大2”可列得方程为
(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为
四、课外作业 P151习题5.1
初中数学教案模板 篇5
一、指导思想:
按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学都能够在此数学学习过程中获得最适合自已发展的广泛空间。通过九年级数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维级力和空间想象能力,能够运用所学知识解决简朴的实际问题,培养学生手数学创新意识,良好个性品质以及初步的唯物主义观。
二、教学内容
本学期所教九年级数学包括第一章《一元二次方程》,第二章《定义命题公理与证实》,第三章《相似形》,第四章《解直角三角形》。第五章《概率的计算》。
三、教学目标
知识技能目标:会解一元二次方程:理解定义命题公理并学会运用:掌握相似形的相关知识及运用;会解直解三角形,掌握概率的初步计算方法。
过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。
四、教学措拖
1、教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。
2、教学速度以适应大多学生为主,尽量兼顾后进生,注意整体推进。
3、新课教学中涉及到旧知识时,对其作相应的复习回顾。
4、复习阶段多让学生动脑、动手、通过各种习题、综合试题和模仿试题的训练,使学生逐步认识各知识点,并能纯熟运用。
初中数学教案模板范例 篇6
一、教材分析
(一)、教材内容的地位和作用
《代数式的值》选自义务教育课程标准实验教科书(人教版)七年级数学(上)第二章,是我个人根据学生的知识基础较差、认知能力不强以及思维品质不够活跃等实际情况而在教学中加以补充的一节课。代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?
(二)、教学目标
根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:
知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。
情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。
(三)、教学重点、难点
教学重点:代数式求值的书写格式。
教学难点:代数式求值的书写格式,变式训练知识的运用。
二、教法、学法分析
本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果,而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。
三、教学程序设计
板书设计:
代数式的值
四、评价与反思
新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。
教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。
无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。
以上是我对《代数式的值》一课的说课,不当之处请各位评委、老师批评指正,谢谢。
初中数学教案模板范例 篇7
关键词:初中数学教学一次函数问题案例行知合一
我国著名教育家陶行知曾经提出“生活即教育”的“行知合一”教学理念,倡导“知”通过“行”进行检验、提升和丰富。教育实践学研究认为,学生学习新知、解答问题的过程,就是运用现有知识经验、解题技能进行问题探索、解答的发展过程。在此过程中,只有将探知所获得的“知”与问题解答活动的“行”进行有效融合,才能实现“教学相长”。一次函数章节是初中数学学科代数部分章节体系中重要的架构“分支”,是数学语言与平面图形有效结合的整体,在整个数学学科教学中占据重要的地位。在一次函数章节问题案例教学实践中,我对知识教学与能力培养内在关系进行了研究和探索,现将教学体会和策略进行论述。
一、设置展示教材内容精髓的问题案例
问题案例作为问题教学活动开展的对象,是教学活动目标要求进行展示的重要载体。针对性、典型性问题案例的设置,能够对问题教学活动的开展,问题教学效能的提升,起到推波助澜的作用。在一次函数问题课教学中,教师一方面要认真“备教材”,钻研教材内容,准确把握教材目标要求,做到教学重点和难点把握准确。另一方面要认真“备学生”,贴近学生学习实际,设置具有针对性的问题案例,使问题紧扣教材、贴近学生,利于问题教学活动的深入开展。
如在“一次函数图像和性质”问题教学中,在问题案例设置时,我抓住一次函数图像和性质教学目标内容,以及学生学习的重难点,将一次函数图像和性质教学作为本节课问题教学的“重中之重”,设置出如下问题:“如图1所示,l■反映了某公司的销售收入与销售量的关系,l■反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量是多少吨?”、“如果点A(-2,a)在函数y=-■x+3的图像上,那么a的值等于多少?”让学生能够将探知学习活动中的“学”有效运用到典型问题案例的解答中,为“行知合一”提供载体和条件。
二、开展能力培养目标主旨的问题教学
能力培养,是新课程标准下学科教育教学的重要目标和要求,也是教学活动开展的出发点和落脚点,数学学科教学同样如此。同时,学习能力作为技能型人才所必备的基本素养,已成为衡量教学活动效能的重要标尺。一次函数问题案例教学活动,也应将“能力培养”作为重要目标和根本追求,提供给学生实践探究的时机,传授问题解答的方法策略,指导学生开展问题解答活动,将一次函数问题教学过程变为学生能力锻炼和提升的过程。
如我在“红星果园基地对购买3000千克以上(含3000千克)的情况有两种方案。甲方案是由基地送货上门,但每千克售价为9元。乙方案是如果顾客自己租车运回,每千克价格为8元,如果某公司要买4500千克水果,现在租车从基地到公司的运输费需要3500元。(1)分别写出该公司两种购买方案的付款y(元)与购买的水果量x(千克)之间的函数关系式,并写自变量x的取值范围。(2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由。”一次函数问题案例教学活动中,发挥学生能动探究的主体特性,采用学生自主探究式教学策略,将该问题解答的任务留给学生完成,自己则做好学生对探究过程的引导和点拨工作。学生在分析问题条件时,认为解答该问题的方法应该是利用一次函数图像和性质,作出两种方案的一次函数图像,然后采用观察图形方法进行问题案例的解答。在探寻问题解题方法的过程中,有部分学生对问题2的解答方法探寻出现了“卡壳”。这时我向学生指出:要付款最少实际上就是求解x在什么情况下,y的值最小。最后向学生指出,解答一次函数问题的关键,就是要对一次函数图像和性质有准确的把握和正确的运用。学生在自主探究过程中,主体特性得到了充分展示,学习能力和素养在实践探究中得到了锻炼和提升。
三、实施检验学习活动效能的教学环节
在一次函数问题案例教学中,由于初中生思维分析能力,探寻问题方法,以及解答问题技能等方面水平较低,在一定程度上影响和制约了“行”的成效和质量,容易出现解题不完整、结果不周密、方法不科学等问题。我在一次函数教学中,利用巩固练习环节,通过师生、生生之间的评价辨析,使学生形成正确的解题方法和思想,实现解题效能的提升。
问题:用画函数图像的方法解不等式5x+4
初中数学教学设计模板 篇8
一、教学设计:
1 学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2 学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3 学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4 教学目标:
(1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
5 教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
6 教学过程
教学步骤
教师活动
学生活动
教学媒体(资源)和教学方式
复习过渡
引入新知
创设情景
提出问题
建立模型
探索发现
归纳总结
得出新知巩固运用
及其推广
反思小结
提炼规律
电脑显示,带领学生复习全等三角定义及其性质。
电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边
分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等。但是,是否一定需要六个条件呢?条件能否尽可能少吗?
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
初中数学教案模板范例 篇9
课程名称:初中数学网课
授课人:张老师
课程时长:1小时
课程目标:本课程的目标是让学生掌握一元二次方程的解法。
授课内容:
1.一元二次方程的概念及一般式。
2.一元二次方程的解法(直接开平方法、公式法、因式分解法)。
3.一元二次方程在实际生活中的应用。
授课方法:
1.讲解一元二次方程的概念及一般式,通过例题演示,让学生理解一元二次方程的解法。
2.通过练习题,让学生掌握一元二次方程的解法。
3.结合实际生活中的应用案例,让学生理解一元二次方程在实际生活中的应用。
教学评价:
1.通过练习题,检查学生对一元二次方程的解法的掌握情况。
2.通过实际生活中的应用案例,检查学生对一元二次方程在实际生活中的应用的理解情况。
3.根据学生的反馈,调整授课内容和方法,提高教学质量。
教学反思:
1.本节课的授课内容较为简单,但学生的掌握情况并不理想,可能是因为学生的学习基础较差。因此,需要加强基础知识的讲解和练习。
2.在实际生活中的应用案例中,可以增加一些趣味性和实用性强的案例,提高学生的学习兴趣和参与度。
3.可以通过课后辅导和答疑,帮助学生巩固所学知识,提高学生的学习效果。