首页 > 教学教案 > 初中教案 > 初中数学教案大全下载(优秀6篇)正文

《初中数学教案大全下载(优秀6篇)》

时间:

作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。大家想知道怎么样才能写一篇比较优质的教案吗?学而不思则罔,思而不学则殆,如下是敬业的小编为大伙儿找到的6篇初中数学教案大全下载,欢迎借鉴,希望对大家有所启发。

初中数学教案.doc 篇1

1、知识与技能

①相似三角形对应高的比,对应角的比,对应叫平分线的比和对应中线的比和相似比的关系。

②利用相似三角形的性质解决一些实际问题。

2、情感与态度

①相似三角形中对应线段的比和相似比的关系,培养学生的探索精神和合作意识。

②通过运用相似三角形的性质,增强学生的应用意识。

重点:相似三角形中对应线段比值的推倒,运用相似三角形的性质解决实际问题。

难点:相似三角形的性质的运用。

通过例题的分析讲解,让学生感受相似三角形的性质在实际生活中的应用。

在理解并掌握相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比的过程中,培养学生利用相似三角形的性质解决现实问题的意识和应用能力

引导启发式、课前准备、幻灯片

教师活动学生活动

一、创设问题情境,引入新课

带领学生复习相似多边形的性质及相似三角形的性质,并提出疑问“在两个相似三角形中,是否只有对应角相等,对应边成比例这个性质?”从而引导学生探究相似三角形的其他性质。

认真听课、思考、回答老师提出的问题。

二、新课讲解

1、做一做

以实际问题做引例,初步让学生感知相似三角形对应高的比和相似比的关系。

钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,图纸上的△abc表示该零件的横断面△abc,cd和cd分别是它们的高。

(1)各等于多少?

(2)△abc与△abc相似吗?如果相似,请说明理由,并指出它们的相似比、

(3)请你在图4-38中再找出一对相似三角形、

(4)等于多少?你是怎么做的?与同伴交流、

阅读课本材料,弄清题意,根据已有的经验积极思考,动手操作画图,在练习本上作答。

依次回答课本提出的4个问题并加以思考

2、议一议

根据上面的引例让学生猜测,证明相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比。

已知△abc∽△abc,△abc与△abc的相似比为k、

(1)如果cd和cd是它们的对应高,那么等于多少?

(2)如果cd和cd是它们的对应角平分线,那么等于多少?如果cd和cd是它们的对应中线呢?

学生经历观察,推证、讨论,交流后,独立回答。

3、教师归纳

总结相似三角形的性质:

相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。

学生理解、熟记。

归纳、类比加深对相似性质的理解

三、课堂练习:

例题讲解,利用相似三角形的性质解决一些问题。

如图所示,在等腰三角形abc中,底边bc=60cm,高ad=40cm,四边形pqrs是正方形。

(1)△asr与△abc相似吗?为什么?

(2)求正方形pqrs的边长。

阅读例题材料,弄懂题意,然后运用所学知识作答。写出解题过程。

四、探索活动:

如图,ad,ad分别是△abc和△abc的角平分线,且ab:ab=bd:bd=ad:ad,你认为△abc∽△abc吗?

针对此题,学生先独立思考,然后展开小组讨论,充分交流后作答。

五、课时小结

指导学生结合本节课的知识点,对学习过程进行总结。

本节课主要根据相似三角形的性质和判定判定推导了相似三角形的性质、相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比。

学生畅所欲言,谈学习的体会,遇到的困难以及获得的启发。

六、布置课后作业:

课后习题节选。

独立完成作业。

初中数学教案 初中数学教案.doc 篇2

利用数形结合的数学思想分析问题解决问题。

利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

运用数形结合的思想方法进行解二次函数,这是重点也是难点。

(一)引入:

分组复习旧知。

探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?

可引导学生从几个方面进行讨论:

(1)如何画图

(2)顶点、图象与坐标轴的交点

(3)所形成的三角形以及四边形的面积

(4)对称轴

从上面的问题导入今天的课题二次函数中的图象与性质。

(二)新授:

1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点a,且与x轴交于点b、c;在抛物线上求一点e使sbce= sabc。

再探索:在抛物线y=x2+4x+3上找一点f,使bce与bcd全等。

再探索:在抛物线y=x2+4x+3上找一点m,使bom与abc相似。

2、让同学讨论:从已知条件如何求二次函数的解析式。

例如:已知一抛物线的顶点坐标是c(2,1)且与x轴交于点a、点b,已知sabc=3,求抛物线的解析式。

(三)提高练习

根据我们学校人人皆知的船模特色项目设计了这样一个情境:

让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

(四)让学生讨论小结(略)

(五)作业布置

1、在直角坐标平面内,点o为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点a(x1,0)、b(x2,0)且(x1+1)(x2+1)=—8。

(1)求二次函数的解析式;

(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为c,顶点为p,求 poc的面积。

2、如图,一个二次函数的图象与直线y= x—1的交点a、b分别在x、y轴上,点c在二次函数图象上,且cbab,cb=ab,求这个二次函数的解析式。

3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度ab=5cm,拱高oc=0。9cm,线段de表示大桥拱内桥长,de∥ab,如图1,在比例图上,以直线ab为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。

(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;

(2)如果de与ab的距离om=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)

初中数学教案 篇3

教学目标:

1.会用待定系数法求反比例函数的解析式。

2.通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义。

3.会通过已知自变量的值求相应的反比例函数的值。运用已知反比例函数的值求相应自变量的值解决一些简单的问题。

重点:用待定系数法求反比例函数的解析式。

难点:例3要用科学知识,又要用不等式的知识,学生不易理解。

教学过程:

一。复习

1、反比例函数的定义:

判断下列说法是否正确(对‖√‖,错‖3‖)

(1)一矩形的面积为20cm2,相邻的两条边长分别为x(cm)和y(cm),变量y是变量x的反比例函数。(2)圆的面积公式s??r2中,s与r成正比例。(3)矩形的长为a,宽为b,周长为C,当C为常量时,a是b的反比例函数。方形的边长为x,高为y,当其体积V为常量时,y是x的反比例函数。(4)一个正四棱柱的底面正

定时,商和除数成反比例。(5)当被除数(不为零)一

(6)计划修建铁路1200km,则铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数。

2、思考:如何确定反比例函数的解析式?

(1)已知y是x的反比例函数,比例系数是3,则函数解析式是_______

(2)当m为何值时,函数4是反比例函数,并求出其函数解析式.y?2m?2关键是确定比例系数!x

二。新课

1.例2:已知变量y与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式和自变量的取值范围。小结:要确定一个反比例函数y?k的解析式,只需求出比例系数k。如果已知一对自变量与函数的对应值,x

3时,y=2,求这个函数的解析式和自变量的取值范围。4就可以先求出比例系数,然后写出所要求的反比例函数。2.练习:已知y是关于x的反比例函数,当x=?

3.说一说它们的求法:

(1)已知变量y与x-5成反比例,且当x=2时y=9,写出y与x之间的函数解析式。

(2)已知变量y-1与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式。

4.例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A)。

(1)已知一个汽车前灯的电阻为30Ω,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的实际意义。

(2)如果接上新灯泡的电阻大于30Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化?

在例3的教学中可作如下启发:

(1)电流、电阻、电压之间有何关系?

(2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?

(3)前灯的亮度取决于哪个变量的大小?如何决定?

先让学生尝试练习,后师生一起点评。

三。巩固练习:

1.当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=1.98kg/m3

(1)求p与V的函数关系式,并指出自变量的取值范围。

(2)求V=9m3时,二氧化碳的密度。

四。拓展:

1.已知y与z成正比例,z与x成反比例,当x=-4时,z=3,y=-4.求:

(1)Y关于x的函数解析式;

(2)当z=-1时,x,y的值。

2.已知y?y1?y2,y1与x成正例,y2与x成反比例,并且x?2与x?3时,y的

值都等于10,求y与x之间的函数关系。

五。交流反思

求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的I?

六、布置作业:P4B组

教学后记:

U由欧姆定律得到。R

初中数学教案.doc 篇4

1、掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用。

2、正确运用二次根式的性质及运算法则进行二次根式的混合运算。

正确运用二次根式的性质及运算法则进行二次根式的混合运算。

学习难点:二次根式计算的结果要是最简二次根式。

知识准备

1、满足下列条的二次根式是最简二次根式。

2、回忆有理数,整式混合运算的顺序。

3、回忆并整理整式的乘法公式。

方法探究1

⑴(512+23)x15

⑵(3+10)(2-5)

归纳:

尝试练习:

⑴(3+22)x6

⑵(827-53)6

⑶(6-3+1)x23

⑷(3-22)(33-2)

⑸(22-3)(3+2)

⑹(5-6)(3+2)

方法探究2

⑴(3+2)(3-2)

⑵(3+25)2

归纳:

尝试练习:

⑴(5+1)(5-1)

⑵(7+5)(5-7)

⑶(25-32)(25+32)

⑷(a+b)(a-b)

⑸(3-2)2

⑹(32-45)2

⑺(3-22)(22-3)

⑻(a-b)2

⑼(1-23)(1+23)-(1+3)2

⑽(3+2-5)(3+2+5)

例题解析

1、计算:(22-3)2011(22+3)2012。

2、若x=10-3,求代数式x2+6x+11的值。

3、若x=11+72,y=11—72,求代数式x2-xy+y2的值。

内反馈

1、计算12(2-3)=

2、计算⑴(2+3)(2-3)=

⑵(5-2)2010(5+2)2011=

3、计算:

⑴12(75+313-48)

⑵(1327-24-323)12

⑶(23-5)(2+3)

⑷(5-3+2)(5+3-2)

⑸(312-213+48)÷23

4、已知a=3+2,b=3-2,求下列各式的值。

⑴a2-b2

⑵1a-1b

⑶a2-ab+b2

5、若x=3+1,求代数式x2-2x-3的值。

初中数学教案 篇5

教学目标

1.使学生正确理解的意义,掌握的三要素;

2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;

3.使学生初步理解数形结合的思想方法。

教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数。

难点:正确理解有理数与上点的对应关系。

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——.

二、讲授新课

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):

1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做。

进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可。

三、运用举例 变式练习

例1 画一个,并在上画出表示下列各数的点:

例2 指出上A,B,C,D,E各点分别表示什么数。

课堂练习

示出来。

2.说出下面上A,B,C,D,O,M各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示。

四、小结

指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。

本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究。

五、作业

1.在下面上:

(1)分别指出表示-2,3,-4,0,1各数的点。

(2)A,H,D,E,O各点分别表示什么数?

2.在下面上,A,B,C,D各点分别表示什么数?

3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初中数学教案.doc 篇6

1、初步体会从不同方向观察同一物体可能看到不同的图形;

2、能识别简单物体的三视图,体会物体三视图的合理性;

3、会画立方体及其简单组合的三视图;

1、在“观察”的活动过程中,积累数学活动经验,发展空间观念;

2、能在与他人交流的过程中,合理清晰地表达自己的思维过程;

3、渗透多侧面观察分析的思维方法;

通过系列学生感兴趣的活动,形成学习数学的积极情感,激发对空间与图形学习的好奇心,逐渐形成与他人合作交流的意识。

重点:体会从不同方向看同一物体可能看到不同的结果。

难点:能画立方体及简单组合的三视图。

①发现式教学法

②动手实践与思考相结合法

一、创设情境,引入新课

1、看录像;

2、从学生熟悉的古诗入手,观察庐山;

3、房屋的房型图。

二、观察体验、探索结论

活动1:观察一组图片,找出结论。

活动2:观察图片,注意这些图片的拍摄角度,你能挑出一组三视图的图片吗?

活动3:猜猜看:通过从不同角度拍摄的图片来猜测实物是什么?

活动4:观察下图

如果分别从正面、左面、上面看着三个几何体,分别得到什么平面图形?

三、学画简单几何体的三视图

给出由4个小正方体形成的组合图形,从正面、左面、上面观察并画出相应的平面图形、

如:从上面看

从左面看

从正面看从左面看从上面看

从正面看

做一做:以小组为单位,用6个小立方体块搭出不同的几何体,然后根据搭建的几何体画出从正面、左面、上面观察得到的平面图形,并在小组内交流验证,看谁画的图最标准、而后,全班同学根据某小组画的三视图来组合立体图形。

四、小结与反思:

1、本节课研究的主要内容是什么?

2、本节课数学知识对平时的学习生活有何作用?

五、练习与作业:

1、能力作业:画出我校教学楼的三视图(以面向南为“从正面看”),或者画出你家的房屋(或设计)的平面图。