首页 > 教学教案 > 高中教案 > 高一教案 > 高一数学教案优秀8篇正文

《高一数学教案优秀8篇》

时间:

作为一位优秀的人民教师,时常要开展教案准备工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么应当如何写教案呢?这次漂亮的小编为您带来了高一数学教案优秀8篇,希望能够给予您一些参考与帮助。

《圆的周长》教学设计 篇1

教学内容:圆的周长

内容分析:通过帮助学生回忆周长的概念,引出圆周长的概念;接着引出本课研究的问题:圆的周长和直径的关系,通过学生的动手实践活动,得出圆的周长是直径的3.14倍,给出圆周长的计算公式,并介绍了祖冲之和圆周率,最后运用周长公式,加深对公式的理解。

学生起点:对圆和周长的概念已有初步的认识

教学目标:

1、理解圆周长的概念,理解圆周率的意义。

2、使学生掌握圆周长的计算公式及公式的推导过程。

3、以自主探究、小组讨论、合作的形式,培养学生观察、分析和解决问题的能力。

4.结合圆周率的由来,了解祖冲之的故事,对学生进行爱国主义教育。

教学重点:圆周长公式的推导。

教学准备:直尺;两个有厚度、标明直径、不同规格的圆片;棉线。

教学流程:

一、复习引入

1、学生说圆的认识;

(你对圆的知识有哪些了解)

2、揭示课题:

今天我们要一起来学习圆的周长。(板书:圆的周长)

二、新授

1.认识圆的周长;

(1)师拿出圆片让学生指出圆的周长;

(哪一部分是圆的周长)

(2)描出两个规格不同的圆的周长;感受圆的周长;

(请你描出练习纸上两个圆的周长。)

(哪一个周长长?)

(3)揭示圆周长的概念;

(用自己的话说说什么是圆的周长)

师小结:围成圆的曲线的长叫做圆的周长;

围成圆的一周的长叫做圆的周长。(幻灯出示)

2、理解、运用圆周长的测量方法。

师问:圆的周长长短不一,该怎么测量?

生边演示测量圆片周长,边介绍绳测法。

要求学生测量出两个圆片的周长,并把周长和相应的直径填入记录单中。

学生汇报测量结果,师记录。

圆片测量记录单:

3.探究圆的周长与直径的关系。

(1)猜测跟圆周长相关的量;

(猜测一下,圆的周长长短跟什么量有关?)

计算记录单中周长与直径的比值,得数保留两位小数;

学生反馈比值;

周长(厘米)

直径(厘米)

周长与直径的比值(得数保留两位)

(2)认识圆周率

①揭示圆周率:周长与直径的比值都是3倍多一些,其实这个比值是个固定不变的,我们称它为圆周率,用π表示。

(板书:圆周率π)

②幻灯片展示圆周率的由来,学生自主阅读;

总结圆周长的计算公式。

①是不是所有圆的周长都需要经过测量而得到呢?有没有较好的计算方法?

提示:从测量记录单中找取。

②如果周长用C表示,字母式是怎样的?

③周长跟半径又是怎样的关系呢?字母式呢?

(板书:圆周长=圆周率×直径C=πd或

圆周长=2×圆周率×半径C=2πr

三、巩固练习

基本练习

一个圆的直径是10米,它的周长是多少?一个圆的半径是10米,它的周长是多少?判断。

只要知道圆的直径或半径就可以计算圆的周长。()大圆的圆周率大,小圆的圆周率小。()圆周率的值就是3.14.()4圆的周长是直径的倍。()能力拼比:

两个小朋友同时同速从A点到B点,谁先到达?

四、总结:学习了这堂课你有哪些收获?

《圆的周长》教学设计 篇2

教学内容:圆的周长

教学重点:理解圆周率的意义。

教学难点:探究圆的周长的计算方法。

教学过程:

一、导入新课

故事导入,观看后提问:

1、谁获胜呢?

2、它们对自己跑的距离产生了怀疑,都说自己跑的远……

3、拿起一个圆用手模一摸感知什么是圆的周长。

二、新课

(一)介绍测量方法:

1、绳测法。

2、滚动法。

3、教师引导学生运用“化曲为直”的思想,知道绳测法和滚动法测量圆的周长,并让学生感知这两种方法的局限性

(二)猜想。(三)实验。

1、小组协作。

周长c(厘米)

直径d(厘米)

周长与直径的比值(保留两位小数)

2、汇报测量和计算结果。

提问:通过这些实验和统计,你发现圆的周长和直径有没有关系?有怎样的关系?

学生:发现每个圆的周长总是直径的3倍多一些。

(四)验证结论。

(五)阅读理解有关圆周率的知识。

三、练习

计算方法:

1、能说出圆周长的计算方法吗?

c=∏dc=2∏r(板书)

2、根据条件,求下面各圆的周长。

d=10cmr=10cm

3、(略)

4、现在你明白小龟和小兔谁跑的路程长吗?谁跑得快?

5、拓展练习。

四、总结。

你学会了什么?请主动用你学会的知识去解决生活中有关圆的周长的问题。

附:教学设想

一、选择与新知识最佳关系的生长点,巧制课件,导入新课。

“周长”是已学过的概念,但以前讲的长、正方形的周长是指封闭折线的长度,而圆的周长是指封闭曲线的长度。一“直”一“曲”既有联系亦有区别。我抓住这一新知识的连接点导入新课。激发学生的求知欲。

二、调动学生积极主动参与,给学生充分的探索空间。

整个教学过程中,我设计灵活多样的教学方法。例:课件演示与实验相结合,个别实验和小组实验相结合,讲与练相结合,计算与测量相结合,谈话与板书相结合,讲与练相结合,计算与测量相结合。充分调动学生学习的主动性,给学生充分的探索时空,并且探究的题材对学生也具有一定的挑战性。学生的角色由知识的接受者转变为知识的构建者。

三、在研究性学习中培养学生合作意识和数学交流能力。

小组探索通过测、剪、量、算一系列操作认识圆的周长与直径有一定的倍数关系,巧用课件,概括出圆周长的计算公式。

附:教后感:

这次“三新一整合”的活动促使我重温《新教材标准》,改进自己教学观念,学习有关信息技术整合的新模式。本节课体现了我教学观念的一些改变。主要体现在:

一、把课堂的主动权交给了学生,给学生充分的探索时空。

课堂教学是“教”与“学”的统一,随着素质教育的不断深化,越来越偏重于“学”的研究(三新活动中的“新学法”)。教师不再是知识的提供者和传授者,而是数学学习的组织者、引导者、参与者;学生不再是知识的接受者,而是数学知识的建构者。师生角色的的变化,使学生在学习方式上有了质的飞跃。动手实践,自主探索、合作交流成为学生重要的学习方式。圆的周长计算方法的探索,这题材对学生有一定的挑战性,也就是和学生的现有认知状态有一个适度距离(潜在距离),学生在这种状态下的探究学习才是有意义的学习。本节课给予学生充分的时间探索出圆的周长总是直径的3倍多一些。

二、利用课件,激发探究兴趣、提高探究效率和培养探究能力。

课件动感的龟兔赛跑把全体学生引入课堂,理解了课题的含义、明确了学习的目的性,激发了探索的兴趣。课件的几次龟兔赛跑的介入,并逐级演示,再加上老师的启发引导和学生的观察思考有机结合,化抽象为具体,使学生进一步理解了圆周长的含义,明确学习目的性,激发了学生的探究兴趣。

运用课件设计自学内容,大大节省了板书所用的时间,使学生探究数学问题的效率得以提高。正方形周长和圆周长比较,大圆周长和几个内切小圆的周长和比较。通过课件的演示,对于引导学生说理,理解疑难问题,培养学生解决新问题的探究能力有着极为重要的作用。

三、巧妙设计练习,照顾全体,培养学生的创造能力。

本节课的练习全部是要利用课堂所学的内容解决生活中的问题。特别是通过小组学习形式让学生利用圆周长的知识举出能解决生活中哪些有关圆周长的知识这一开放性题型。激发了学生的兴趣,也照顾了不同层面的学生。学生所举的例子充分体现了学生的创造性和运用知识的能力。

运用了探究式课堂教学。上课后,也有许多地方值得我进一步深思。例如怎样设问、问题开放到什么程度、信息技术怎样完美地和课堂整合、教学理念的进一步改变……

探究式课堂是否取得实效,归根到底是以学生是否参与、怎样参与、参与多少来决定的同时只有让学生主动参与教学,才能让课堂充满生机。

高一数学教案 篇3

教学目标:

1、初步掌握圆周长、弧长公式;

2、通过弧长公式的推导,培养学生探究新问题的能力;

3、调动学生的积极性,培养学生的钻研精神;

4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力。

教学重点:弧长公式。

教学难点:正确理解弧长公式。

教学活动设计:

(一)复习(圆周长)

已知⊙O半径为R,⊙O的周长C是多少?

C=2πR

这里π=3.14159…,这个无限不循环的小数叫做圆周率。

由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?

提出新问题:已知⊙O半径为R,求n°圆心角所对弧长。

(二)探究新问题、归纳结论

教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).

研究步骤:

(1)圆周长C=2πR;

(2)1°圆心角所对弧长=;

(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

(4)n°圆心角所对弧长=.

归纳结论:若设⊙O半径为R,n°圆心角所对弧长l,则

(弧长公式)

(三)理解公式、区分概念

教师引导学生理解:

(1)在应用弧长公式进行计算时,要注意公式中n的意义。n表示1°圆心角的倍数,它是不带单位的;

(2)公式可以理解记忆(即按照上面推导过程记忆);

(3)区分弧、弧的度数、弧长三概念。度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧。

(四)初步应用

例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d (精确到1mm).

分析:(1)圆环的宽度与同心圆半径有什么关系?

(2)已知周长怎样求半径?

(学生独立完成)

解:设外圆的半径为R1,内圆的半径为R2,则

d= .

∵,,

∴ (cm)

例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

教师引导学生把实际问题抽象成数学问题,渗透数学建模思想。

解:由弧长公式,得

(mm)

所要求的展直长度

L (mm)

答:管道的展直长度为2970mm.

课堂练习:P176练习1、4题。

(五)总结

知识:圆周长、弧长公式;圆周率概念;

能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题。

(六)作业教材P176练习2、3;P186习题3.

高一数学教案 篇4

教学目标:

1、应用圆周长、弧长公式综合圆的有关知识解答问题;

2、培养学生综合运用知识的能力和数学模型的能力;

3、通过应用题的教学,向学生渗透理论联系实际的观点。

教学重点:灵活运用弧长公式解有关的应用题。

教学难点:建立数学模型。

教学活动设计:

(一)灵活运用弧长公式

例1、填空:

(1)半径为3cm,120°的圆心角所对的弧长是_______cm;

(2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;

(3)已知半径为3,则弧长为π的弧所对的圆心角为_______.

(学生独立完成,在弧长公式中l、n、R知二求一。)

答案:(1)2π;(2)24;(3)60°.

说明:使学生灵活运用公式,为综合题目作准备。

练习:P196练习第1题

(二)综合应用题

例2、如图,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m.(1)求皮带长(保留三个有效数字);(2)如果小轮每分转750转,求大轮每分约转多少转。

教师引导学生建立数学模型:

分析:(1)皮带长包括哪几部分(+DC++AB);

(2)“两个皮带轮的中心的距离为2.1m”,给我们解决此题提供了什么数学信息?

(3)AB、CD与⊙O1、⊙O2具有什么位置关系?AB与CD具有什么数量关系?根据是什么?(AB与CD是⊙O1与⊙O2的公切线,AB=CD,根据的是两圆外公切线长相等。)

(4)如何求每一部分的长?

这里给学生考虑的时间和空间,充分发挥学生的主体作用。

解:(1)作过切点的半径O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足为E.

∵O1O2=2.1,,,

∴,

∴ (m)

∵,∴,

∴的长l1 (m).

∵,∴的长(m).

∴皮带长l=l1+l2+2AB=5.62(m).

(2)设大轮每分钟转数为n,则

,(转)

答:皮带长约5.63m,大轮每分钟约转277转。

说明:通过本题渗透数学建模思想,弧长公式的应用,求两圆公切线的方法和计算能力。

巩固练习:P196练习2、3题。

探究活动

钢管捆扎问题

已知由若干根钢管的外直径均为d,想用一根金属带紧密地捆在一起,求金属带的长度。

请根据下列特殊情况,找出规律,并加以证明。

提示:设钢管的根数为n,金属带的长度为Ln如图:

当n=2时,L2=(π+2)d.

当n=3时,L3=(π+3)d.

当n=4时,L4=(π+4)d.

当n=5时,L5=(π+5)d.

当n=6时,L6=(π+6)d.

当n=7时,L7=(π+6)d.

当n=8时,L8=(π+7)d.

猜测:若最外层有n根钢管,两两相邻接排列成一个向外凸的圈,相邻两圆是切,则金属带的长度为L=(π+n)d.

证明略。

高一数学教案 篇5

一:【课前预习】

(一):【知识梳理】

1.直角三角形的边角关系(如图)

(1)边的关系(勾股定理):AC2+BC2=AB2;

(2)角的关系:B=

(3)边角关系:

①:

②:锐角三角函数:

A的正弦= ;

A的余弦= ,

A的正切=

注:三角函数值是一个比值。

2.特殊角的三角函数值。

3.三角函数的关系

(1) 互为余角的三角函数关系。

sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA

(2) 同角的三角函数关系。

平方关系:sin2 A+cos2A=l

4.三角函数的大小比较

①正弦、正切是增函数。三角函数值随角的增大而增大,随角的减小而减小。

②余弦是减函数。三角函数值随角的增大而减小,随角的减小而增大。

(二):【课前练习】

1.等腰直角三角形一个锐角的余弦为( )

A. D.l

2.点M(tan60,-cos60)关于x轴的对称点M的坐标是( )

3.在 △ABC中,已知C=90,sinB=0.6,则cosA的值是( )

4.已知A为锐角,且cosA0.5,那么( )

A.060 B.6090 C.030 D.3090

二:【经典考题剖析】

1.如图,在Rt△ABC中,C=90,A=45,点D在AC上,BDC=60,AD=l,求BD、DC的长。

2.先化简,再求其值, 其中x=tan45-cos30

3. 计算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○

4.比较大小(在空格处填写或或=)

若=45○,则sin________cos

若45○,则sin cos

若45,则 sin cos.

5.⑴如图①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;

⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小。

三:【课后训练】

1. 2sin60-cos30tan45的结果为( )

A. D.0

2.在△ABC中,A为锐角,已知 cos(90-A)= ,sin(90-B)= ,则△ABC一定是( )

A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形

3.如图,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cosOAB等于__________

4.cos2+sin242○ =1,则锐角=______.

5.在下列不等式中,错误的是( )

A.sin45○sin30○;B.cos60○tan30○;D.cot30○

6.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()

7.如图所示,在菱形ABCD中,AEBC于 E点,EC=1,B=30,求菱形ABCD的周长。

8.如图所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值

9.如图 ,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45方向上,测得B在北偏东32方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米。参考数据:sin32○0.5299,cos32○0.8480)

10.某住宅小区修了一个塔形建筑物AB,如图所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60,求建筑物的高度。(精确0.1米)

高一数学教案 篇6

教学目标

1、使学生理解求圆锥体积的计算公式。

2、会运用公式计算圆锥的体积。

教学重点

圆锥体体积计算公式的推导过程。

教学难点

正确理解圆锥体积计算公式。

教学步骤

一、铺垫孕伏

1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)

二、探究新知

(一)指导探究圆锥体积的计算公式。

1、教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验

3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的。

板书:

5、推导圆锥的体积公式:用字母表示圆锥的体积公式。板书:

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习

圆锥的底面积是5,高是3,体积是( )

圆锥的底面积是10,高是9,体积是( )

(二)教学例1

1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

学生独立计算,集体订正。

板书:

答:这个零件的体积是76立方厘米。

2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

(1)已知圆锥的底面半径和高,求体积。

(2)已知圆锥的底面直径和高,求体积。

(3)已知圆锥的底面周长和高,求体积。

4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

(三)教学例2

1、例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

思考:这道题已知什么?求什么?

要求小麦的重量,必须先求什么?

要求小麦的体积应怎么办?

这道题应先求什么?再求什么?最后求什么?

2、学生独立解答,集体订正。

板书:(1)麦堆底面积:

=3.14×4

=12.56(平方米)

(2)麦堆的体积:

12.56×1.2

=15.072(立方米)

(3)小麦的重量:

735×15.072

=11077.92

≈11078(千克)

答:这堆小麦大约重11078千克。

3、教学如何测量麦堆的底面直径和高。

(1)启发学生根据自己的生活经验来讨论、谈想法。

(2)教师补充介绍。

a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径。也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的'直径。

b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得。

三、全课小结

通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

《圆的周长》教学设计 篇7

一、教学内容:圆的周长计算方法与应用

二、教学目的:

1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。

2、培养学生的观察、比较、分析、综合及动手操作能力。

3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

4、结合圆周率的学习,对学生进行爱国主义教育。

三、教学重点:

1、理解圆周率的意义。

2、推导出圆的周长的计算公式并能够正确计算。

四、教学难点:理解圆周率的意义。

五、教学过程:

一、创设情境,引入新课

1、用多媒体出示:龟兔赛跑路线图。

第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

2、师问:

a,小乌龟跑的路程就是正方形的什么?小白兔呢?

b、什么是圆的周长?请你摸一摸你手中圆的周长。

3、师:今天我们就来研究圆的周长。并出示课题

二、引导探究,学习新知

(一)推导圆的周长公式

1、学生讨论

(1)正方形的周长跟谁有关系?有什么关系?

(2)你认为圆的周长和谁有关系?

2、猜测

看图后讨论:圆的周长大约是直径的几倍?为什么?

小结:通过观察大家都已经注意到了圆的周长肯定是直径的2—4倍,那到底是多少倍呢?你有什么好办法吗?

3。动手操作

(1)以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。

师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。

师:看哪一组配合好,速度快,较精确。开始!

(2)整理并填写表格。单位:厘米

测量对象

圆的周长

圆的直径

周长与直径的比值

(3)汇报小结。

师:用实物投影展示整理的表格。

师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些?

(三)认识圆周率、介绍祖冲之

1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。

π≈3.14

2。介绍祖冲之

(四)归纳圆的周长公式

1、怎样求周的长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

师板书:c=πd

2、圆的周长还可以怎样求?由于d=2r则:c=2πr

师板书:c=2πr

师问:圆的周长分别是直径与半径的几倍?

三、巩固应用,强化新知

(1)求下面各圆的周长。

1、d=2米2。d=1.5厘米

(2)求下面各圆的周长。

1、r=6分米2。r=1.5厘米

(二)判断题

1、π=3.14()

2、计算圆的周长必须知道圆的直径。()

3、只要知道圆的半径或直径,就可以求圆的周长。()

(三)选择题

1、较大的圆的圆周率()较小的圆的圆周率。

a大于b小于c等于

2、半圆的周长()圆周长。

a大于b小于c等于

(四)课堂反馈

你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

(五)实践操作

请同学们,画一个周长是12.56厘米的圆,

先以小组为单位讨论:画多大?如何画?再操作。

四、课堂总结,梳理知识

师:通过这堂课的学习,你有什么收获?你还有什么问题吗?

《圆的周长》教学设计 篇8

一、教学目标

1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

2.培养学生的观察、比较、分析、综合及动手操作能力;

3.结合圆周率的学习,对学生进行爱国主义教育。

二、教学准备

一元硬币、圆形纸片等实物以及直尺,测量结果记录表

三、教学过程:

<一>、创设情境,引起猜想:

(一)激发兴趣

小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

(二)认识圆的周长

1.回忆正方形周长:

小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

2.认识圆的周长:

那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

每个同学的桌上都有一元硬币,互相指一指这些圆的周长。

(三)讨论正方形周长与其边长的关系

1。我们要想对这两个路程的长度进行比较,实际上需要知道什么?

2.怎样才能知道这个正方形的周长?说说你是怎么想的?

3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

(四)讨论圆周长的测量方法

1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

2.反馈:(基本情况)

(1)“滚动”——把实物圆沿直尺滚动一周;

(2)“缠绕”——用绸带缠绕实物圆一周并打开;

(3)初步明确运用各种方法进行测量时应该注意的问题。

3.小结各种测量方法:(板书)

化曲为直

4.创设冲突,体会测量的局限性

刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?

5.明确课题:

今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

(五)合理猜想,强化主体:

1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答

2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

向大家说一说你是怎么想的。

3.正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

4.小结并继续设疑:

通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

<二>、实际动手,发现规律:

(一)分组合作测算

1.明确要求:

圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系

2.生利用学具动手操作,师巡视指导、收集信息。

3.集体反馈数据(选取3~4组实验结果,黑板板书展示)

(二)发现规律,初步认识圆周率

1.看了几组同学的测算结果,你有什么发现?

2.虽然倍数不大一样,但周长大多是直径的几倍?

板书:圆的周长总是直径的三倍多一些。

(三)介绍祖冲之,认识圆周率

1.这个倍数通常被人们叫做圆周率,用希腊字母π表示。

2.早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

3.这个倍数究竟是多少呢?我们来看一段资料。

(祖冲之是我国南北朝时期,河北省涞源县人。祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位。不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

4.理解误差

看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

5.解答开始的问题

现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

(四)总结圆周长的计算公式

1.如果知道圆的直径,你能计算圆的周长吗?

板书:圆的周长=直径×圆周率

C=πd

2.如果知道圆的半径,又该怎样计算圆的周长呢

板书:C=2πr

追问:那也就是说,圆的周长总是半径的多少倍

<三>、巩固练习,形成能力

1.判断并说明理由:π=3.14()

2.选择正确的答案:

大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()

a.大圆的圆周率大于小圆的圆周率;

b.大圆的圆周率小于小圆的圆周率;

c.大圆的圆周率等于小圆的圆周率。

3.实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

<四>、课外引申,拓展思维

如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

绕8字跑,谁跑的路程近