首页 > 教学教案 > 高中教案 > 高中数学对数函数教案【最新2篇】正文

《高中数学对数函数教案【最新2篇】》

时间:

对数函数,它实际上就是指数函数的反函数,可表示为x=a^y。以下是品才网pincai。下面是整理的高中数学对数函数教案【最新2篇】,希望能够给予您一些参考与帮助。

高中数学对数函数教案 篇1

教学任务:

(1)应用对数函数的图像和性质比较两个对数的大小;

(2)熟练应用对数函数的图象和性质,解决一些综合问题;

(3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力。

教学重点:应用对数函数的图象和性质比较两个对数的大小。

教学难点:对对数函数的性质的综合运用。

回顾与总结

定义域

(1) 定义域: (0,+∞)

值域

(2) 值域:R

(3) 过点(1,0), 即x=1 时, y=0

(4) 00;

x>1时, y<0 x>1时, y>0

(5) 在(0,+∞)上是增函数 (5)在(0,+∞)上是减函数

应用举例

例2:比较下列各组中,两个值的大小:

log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7

(3) loga5.1与 loga5.9(a>o,且a≠1)

(1)解法一:画图找点比高低(略)

解法二:利用对数函数的单调性

考察函数y=log 2 x ,

∵a=2 > 1,

∴ y=log2x在(0,+∞)上是增函数;

∵3.4<8.5

∴ log23.4< log28.5

(2)解:考察函数y=log 0.3 x ,

∵a=0.3< 1,

∴ y=log 0.3 x在区间(0,+∞)上是减函数;

∵1.8<2.7

∴ log 0.3 1.8> log 0.3 2.7

(3) loga5.1与 loga5.9(a>o,且a≠1)

解: 若a>1则函数在区间(0,+∞)上是增函数;

∵5.1<5.9

∴ loga5.1 < loga5.9

若0

∵5.1<5.9

∴ loga5.1 > loga5.9

注意:若底数不确定,那就要对底数进行分类讨论,即0 1

三:你能口答吗? 变一变还能口答吗?

C2

C4

C1

C3

四:想一想?

底数a对对数函数y=logax的图象有什么影响?

分析:指数函数的图象按a>1和0

故对数函数的图象也应a>1和0

(用几何画板)

五:小试牛刀

如图所示曲线是y=logax的图像,已知a的取值为 ,

你能指出相应的C1,C2 ,C3 ,C4 的a的值吗?

六:勇攀高峰

若logn2>logm2>0时,则m与n的关系是( )

A.m>n>1 B.n>m>1 C.1>m>n D.1>n>m

七:再想一想?

你能比较log34和log43的大小吗?

方法一提示:用计算器

方法二提示:想一想如何比较1.70.3与0.93.1的大小?

1.70.3>1.70=0.90>0.93.1

解:log34>log33=log44>log43

例6 溶液酸碱度的测量。溶液酸碱度是通过pH刻画的。 pH的计算公式为pH=-lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升。

(1)根据对数函数性质及上述pH的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;

(2)已知纯净水中氢离子的浓度为[H+]=10-7摩尔/升,计算纯净水的pH.

分析:本题已经建立了数学模型,我们就直接应用公式pH=-lg[H+]

解:(1)根据对数运算性质,有

在(0,+∞)上随[H+]的增大, 减小,相应地, 也减少,即pH减少。所以,随[H+]的增大pH减少,即溶液中氢离子的浓度越大,溶液的酸碱度就越大。

(2)但[H+]=10-7时,pH=-lg10-7=-(-7)=7。所以,纯净水的pH是7。

事实上,食品监督检测部门检测纯净水的质量时,需要检测很多项目,pH的检测只是其中一项。国家标准规定,饮用纯净水的pH应该是5.0~7.0之间。

思考:胃酸中氢离子的浓是2.5×10-2尔/升,胃酸的pH是多少?

八。小结 :

一。本节课我们学习了比较两个对数大小的方法:

(1)应用对数函数单调性比较两个对数的大小;

(2)应用对数函数的图像—“底大图低”比较两个对数的大小。

二。本节课我们还学习了建立数学模型解决实际问题。

九:备用习题

1、已知loga3a<0,则a的取值范围为 。

2、设0

A.0

十:课后作业。

1、书P74,A组题8;

2、书P75,B组题2,3

3、思考:若1

高中数学对数函数教案 篇2

教学目标

1、 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。

2、 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。

3、 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性。

教学重点,难点

重点是理解对数函数的定义,掌握图像和性质。

难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。

教学方法

启发研讨式

教学用具

投影仪

教学过程

一。 引入新课

今天我们一起再来研究一种常见函数。前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。这个熟悉的函数就是指数函数。

提问:什么是指数函数?指数函数存在反函数吗?

由学生说出 是指数函数,它是存在反函数的。并由一个学生口答求反函数的过程:

由 得 。又 的值域为 ,

所求反函数为 。

那么我们今天就是研究指数函数的反函数-----对数函数。

2.8对数函数 (板书)

一。 对数函数的概念

1、 定义:函数 的反函数 叫做对数函数。

由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 。

在此基础上,我们将一起来研究对数函数的图像与性质。

二。对数函数的图像与性质 (板书)

1、 作图方法

提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。

由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图。

具体操作时,要求学生做到:

(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等)。

(2) 画出直线 。

(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分。

学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

和 的图像。(此时同底的指数函数和对数函数画在同一坐标系内)如图:

2、 草图。

教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图:

然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

3、 性质

(1) 定义域:

(2) 值域:

由以上两条可说明图像位于 轴的右侧。

(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线。

(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称。

(5) 单调性:与 有关。当 时,在 上是增函数。即图像是上升的

当 时,在 上是减函数,即图像是下降的。

之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

当 时,有 ;当 时,有 。

学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来。

最后教师在总结时,强调记住性质的关键在于要脑中有图。且应将其性质与指数函数的'性质对比记忆。(特别强调它们单调性的一致性)

对图像和性质有了一定的了解后,一起来看看它们的应用。

三。简单应用 (板书)

1、 研究相关函数的性质

例1. 求下列函数的定义域:

(1) (2) (3)

先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制。

2、 利用单调性比较大小 (板书)

例2. 比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与 ; (4) 与 。

让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小。最后让学生以其中一组为例写出详细的比较过程。

三。巩固练习

练习:若 ,求 的取值范围。

四。小结

五。作业 略

板书设计