首页 > 教学教案 > 教案大全 > 《圆柱的体积》教案(10篇)正文

《《圆柱的体积》教案(10篇)》

时间:

作为一位杰出的教职工,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。写教案需要注意哪些格式呢?下面是的小编为您带来的《圆柱的体积》教案(10篇),在大家参照的同时,也可以分享一下给您最好的朋友。

《圆柱的体积》数学教案 篇1

教学目标:

1、使学生能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

4、渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:灵活应用圆柱的体积公式解决实际问题。

教学过程:

一、复习

1、复习圆柱体积的推导过程

长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。

2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。

二、解决实际问题

1、练习三第7题。

学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。

2、练习三第5题。

(1)指导学生变换公式:因为V=Sh,所以h=VS。也可以列方程解答。

(2)学生选择喜爱的方法解答这道题目。

3、练习三第8题。

(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

(2)在充分理解题意后学生独立完成,集体订正。

4、练习三第9、10题

(1)学生独立审题,完成9、10两题。

(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)

(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。

三、布置作业

完成一课三练的相关练习。

《圆柱的体积》数学教学设计 篇2

教学目标:

1、结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:

掌握和运用圆柱体积计算公式。

教学准点:

掌握圆柱体积公式的推导过程。

教学设想:

1、课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。

2、教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。

3、动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。

4、用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。学生根据不同的公式进行计算,给4个圆柱学具排序。这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。

5、体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了解,学生并不是真正理解圆柱的体积和容积。所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。从形象到抽象建立圆柱的体积概念,符合学生的认知规律。第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。

6、最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。

7、由于每个学生的知识经验、生活情景、思维方式的不同,对知识的学习也有独特的理解和感受。所以我让他们用今天的知识去解决生活中的问题,并写成数学日记,让他们用自己的方式去体验、探究学习过程。

教学过程:

一、问题导入,质疑问难

师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间?

师:这是一个制作学具的学具槽,想一想,它可以做出什么样的学具来?

生:圆柱学具。

师:是的。仔细观察,你有什么发现?

生:圆柱学具占据了学具槽的空间。

师:这就是圆柱学具的体积。你真善于发现!能用你的话说说,什么是圆柱的体积吗?

生:圆柱的体积就是圆柱所占空间的大小。

师:谁来试着给这4个圆柱学具按体积从大到小排排序?你来试试。

生:体积大小接近,不能确定。

师:老师听懂了,无法判断的原因是不知道圆柱体积的大小,现在我们就来研究圆柱的体积。(师板书。)

二、图形转化。猜想推理

师:想一想,你有办法得到这4个圆柱学具的体积吗?(圆柱课件再从槽中跳出。)生:用公式计算。生:用水或沙子转化计算。师:你们是怎样转化的,具体说说。

生:用橡皮泥转化计算。

生:用圆形纸片叠加计算……

师:嗯,这些方法都很好,就在今天的课堂你会选择哪种方法?

生:因为没有实验学具,所以只能用公式计算。

师:其他的方法可以在课后进行。

师:想用公式计算的同学,你想怎样推导圆柱的体积公式呢?结合你们以往学习几何图形的经验,举例说明。

生:大部分图形公式的推导都是把新学的转化为学过的。例如:圆形可以转化为长方形。

师:联系旧知识,采用转化法,确实不错。师:那现在它是一个圆柱,你想怎么办?

生:像刚才一样进行平均分。

师:你能具体说说吗?

生:沿着圆柱的底面直径平均切分成16个小扇形。

师:都说实践出真知,接下来就请同学们拿出学具,动手尝试着进行转化,并说说转化后的结果。

生:将圆柱沿底面直径平均分成16个小扇形,切分之后,可以拼成一个近似的长方体。

师:(刚才我们将圆柱沿底面直径平均分成16个小扇形,拼成一个近似的长方体。)如果想让它更近似于长方体,你想分成多少份?(32)更近似一点。(64)你呢?(128)……

师:这是同学们刚才的转化过程。

师:打开书,自由读,用直线标记,找出关键词,依照关键词自由读读转化的过程。

师:现在再请一名同学到前面来演示转化过程,其他同学注意观察,圆柱转化为长方体后什么变了,什么没变7(圆柱转化为长方体时形状变了,但是它们底面积、高和体积都没变。)

总结文字公式:长方体体积=底面积x高

圆柱体体积=底面积x高

师:恭喜大家,我们已经成功地推导出圆柱的体积公式。(掌声鼓励一下)老师这有一些字母:d、s、r、c、h、v、π。它们与圆柱体体积的计算公式息息相关,请你们用字母表示出圆柱的体积公式。

生:v=shv=(d/2)2πxhv=π2xhv=(c÷π/2)2πxh

师:对比这四个公式你又有什么新发现?(彩色粉笔画线。)

生:相同之处都是底面积乘以高,不同是底面积求法不同。

师:谢谢你精彩的发现,你叫什么名字,认识一下,老师会记住你的。

三、运用公式,解决问题

师:现在我们已经知道了圆柱的体积公式,快来解决刚才的实际问题吧!这是我们要由大到小排序的4个圆柱学具,请你们拿出题卡计算出它们的体积并排序。

1号底面积50平方厘米,高2.1分米:

2号直径是10厘米,高20厘米;

3号半径是4厘米,高22厘米;

4号底面周长31.4厘米,高18厘米。

师:汇报一下你的计算和排序结果,并说说你应用了哪个公式?

师:与他答案相同的同学举手示意一下,你是怎样做的?现在你清楚了吗?

师:看来,灵活运用公式,并选择合理的算法。会使我们的学习更高效。

四、巧用公式,多重探究

师:同学们到现在为止,你都学到了哪些关于圆柱的知识?

生:表面积、体积、容积。

师:老师这里有一组习题。请你们选择合适的问题。

师:读完之后,你认为求什么就可以大声地说出来。

(生:体积、容积、表面积。)

学具厂有一个制作学具的圆柱形铁皮桶。它的底面直径是22厘米,高是25厘米,_________?从里面量底面直径是20厘米,高是25厘米______________9底面积是380平方厘米。侧面积是1727平方厘米_________________?

师:说说你选择问题的根据是什么?

生:体积是圆柱所占空间的大小。容积是圆柱能容纳物体的大小,表面积是圆柱所有面积的总和。

五、开放训练,拓展提升

师:学习很愉快,我们来庆祝一下:在一个棱长为a分米正方体盒中,放一个最大的圆柱体蛋糕,系上b分米长的丝带,(打结部分忽略不计)挖去1根直径为c厘米,高是d厘米的圆柱蜡烛空隙,这个蛋糕体积到底是多少呢?这次我们男女生比赛,列式不计算,看谁解法多并说明解题思路。

《圆柱的体积》数学教案 篇3

教学目标

圆柱的体积(1)

圆柱的体积(教材第25页例5)。

探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。

教学重难点

1、掌握圆柱的体积公式,并能运用其解决简单实际问题。

2、理解圆柱体积公式的推导过程。

教学工具

推导圆柱体积公式的圆柱教具一套。

教学过程

复习导入

1、口头回答。

(1)什么叫体积?怎样求长方体的体积?

(2)怎样求圆的面积?圆的面积公式是什么?

(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。

2、引入新课。

我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?

教师板书:圆柱的体积(1)。

新课讲授

1、教学圆柱体积公式的推导。

(1)教师演示。

把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

(2)学生利用学具操作。

(3)启发学生思考、讨论:

①圆柱切开后可以拼成一个什么立体图形?

学生:近似的长方体。

②通过刚才的实验你发现了什么?

教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?

学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。

(4)学生根据圆的面积公式推导过程,进行猜想:

①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?

②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?

③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?

(5)启发学生说出:通过以上的观察,发现了什么?

①平均分的份数越多,拼起来的形状越接近长方体。

②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。

(6)推导圆柱的体积公式。

①学生分组讨论:圆柱的体积怎样计算?

②学生汇报讨论结果,并说明理由。

教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。

2、教学补充例题。

(1)出示补充例题:一根圆柱形钢材,底面积是1250px2,高是2.1m。它的体积是多少?

(2)指名学生分别回答下面的问题:

①这道题已知什么?求什么?

②能不能根据公式直接计算?

③计算之前要注意什么?

学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。

(3)出示下面几种解答方案,让学生判断哪个是正确的。

①50×2.1=105(cm3)答:它的体积是2625px3。

②2.1m=5250px 50×210=10500(cm3)

答:它的体积是262500px3。

③1250px2=0.5m2 0.5×2.1=1.05(m3)

答:它的体积是1.05m3。

④1250px2=0.005m2

0.005×2.1=0.0105(m3)

答:它的体积是0.0105m3。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。

(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?

教师板书:V=πr2h。

课堂作业

教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。

答案:“做一做”:1. 6750(cm3)

2、 7.85m3

第1题:(从左往右)

3.14×52×2=157(cm3)

3.14×(4÷2)2×12=150.72(cm3)

3.14×(8÷2)2×8=401.92(cm3)

课堂小结

通过这节课的学习,你有什么收获?你有什么感受?

课后作业

完成练习册中本课时的练习。

第4课时圆柱的体积(1)

课后小结

1、“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。

2、采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。

3、推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。

课后习题

教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。

答案:“做一做”:1. 6750(cm3)

2、 7.85m3

第1题:(从左往右)

3.14×52×2=157(cm3)

3.14×(4÷2)2×12=150.72(cm3)

3.14×(8÷2)2×8=401.92(cm3)

《圆柱的体积》数学教案 篇4

教学内容:北师大版数学六年级下册5——6页。

教学目标:

1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学重点:目标1。

教学难点:目标2。

教学过程:

活动一:复习旧知,巩固学过的公式。

1、一个直径是100毫米的圆,求周长。

2、一个半径3厘米的圆,求周长和面积。

3、一个长为3米,宽为2米的长方形,它的面积是多少?

4、出示圆柱体的模型,说说它有什么特征?

活动二;探究新知。

1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)

要解决这个问题,就是求什么?

2、圆柱的表面积包括哪几部分?

3、圆柱的表面积的计算关键在哪一部分?

4、探索圆柱侧面积的计算方法。

1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。

2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?

3)师;圆柱的侧面积就是求长方形的面积。用长乘宽。

4)长就是圆柱的底面圆的周长,宽就是圆柱的高。

5)请你来总结一下圆柱侧面积的计算方法。

6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。

活动三:新知识的运用。

1、求底面半径是10厘米,高30厘米的圆柱的表面积。

2、教师板书:

侧面积:2╳3.14╳10╳30=1884(平方厘米)

底面积:3.14╳10╳10=314(平方厘米)

表面积:1884+314╳2=2512(平方厘米)

要求按步骤进行书写。

2、试一试。

做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?

求至少需要多少铁皮,就是求水桶的表面积。

这道题要注意什么?无盖就只算一个底面。这种题如果求整数,一般用进一法。

3、练一练。书第6页第1题。

3个小题:已知底面直径或底面周长和高,求圆柱的表面积。重点讨论:已知底面周长,求表面积。

《圆柱的体积》数学教学设计 篇5

【教材简析】:

本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

【教学内容】:

p19-20页的内容和例题,完成“做一做”及练习三第1~4题。

【教学目标】:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力。

3、渗透转化思想,培养学生的自主探索意识。

【教学重点】

掌握圆柱体积的计算公式。

【教学难点】

圆柱体积的计算公式的推导。

【教学过程】:

第一课时

本册总课时:1—2课时

一、复习

1、长方体的体积公式是什么?(长方体的体积=长x宽x高,长方体和正方体体积的统一公式“底面积x高”,即长方体的体积=底面积x高)

2、什么叫做物体的体积?你会计算下面那些图形的体积?

3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

(1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)

(2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)

(3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)

(3)通过观察,使学生明确:

长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

长方体的体积=底面积x高,所以圆柱的体积=底面积x高,

v=sh

圆柱的体积计算公式是:

v=sh

2、课堂练习。

(1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?

(2)指名学生分别回答下面的问题:

①这道题已知什么?求什么?

②能不能根据公式直接计算?

③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)让学生解答和板算,最后师生共同完成、

解:v=sh

=75x90

=675(立方厘米)

答:它的体积是675立方厘米。

3、引导思考。

如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(v=πrh)

4、作业。

《圆柱的体积》教案 篇6

●教学内容

苏教版六年级下册第二单元圆柱和圆锥第三课时P17~18页例4,P2页练一练,练习一1~3。

●设计说明

教学目标:

知识技能:结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

数学思考:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

解决问题:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

情感态度:提高学习数学的兴趣和学好数学的信心。

教学重点:

掌握和运用圆柱体积计算公式。

教学难点:

利用“转化”的方法推导圆柱体积公式的过程。

●课时安排

1课时

●教学准备

教师准备:多媒体课件一套。把圆柱沿底面等分成16份的教具。 学生准备:预习教材,把圆柱沿底面等分成16份的'教具。

●教学过程

一、创设情境,提出问题

某玩具厂厂长,他们厂新开发了一种积木玩具,这三个积木的底面积和高都相等,他想比较一下这三个积木的体积的大小,同学们有什么方法?

二、动手实验,探索公式

1.观察、比较,建立猜想。引导生观察例4中的三个几何体,提问:

⑴长方体、正方体的体积相等吗?为什么?

(板书:长方体的体积=底面积×高)

⑵圆柱的体积与长方体、正方体的体积可能相等吗?这三个几何体的底面积和高都相等,它们的体积有什么关系?

2.实验操作,验证猜想

让学生自主探究(材料:圆柱体积木、圆柱体插拼教学具、师准备课件),想办法验证圆柱的体积与长方体、正方体的体积相等。

教师提示:你能想办法把圆柱转化成长方体吗?圆是如何转化成长方形的,可以模仿这样的方法来转化。

⑴小组合作研究怎样将圆柱体转化成一个长方体。

⑵小组代表汇报,全班交流。

(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励) ⑶演示操作。

a.请一名学生演示用切、插、拼的方法把圆柱体转化成长方体。其他学生模仿操作。

b.思考:这是一个标准的长方体吗?为什么?如果分割的份数越多,你会有什么发现?

c.电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)。

3.观察比较,推导公式。

a.小组讨论:

圆柱体转化成长方体后,什么变了,什么没有变?

b.根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积× 高

圆柱的体积 = 底面积× 高

《圆柱的体积》数学教学设计 篇7

教学内容:

北师大版小学数学教材六年级下册第8—10页。

教学目标:

1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,能够运用公式正确的计算圆柱的体积和容积。

2、初步学会用转化的思想和方法,提高解决实际问题的能力。

教学重点、难点:

重点:掌握圆柱体积的计算公式。

难点:圆柱体积计算公式的推导。

教学过程:

一、情境导入

1、出示教学情境:怎样用学过的知识测量出老师的水杯里装了多少毫升的水?

想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出长方体的长、宽和水的高,就能求出水的体积。

2、出示第二情境:圆柱形的木柱子、压路机的车轮这样的圆柱用这种方法还行吗?怎么办?

怎样计算圆柱的体积?这就是我们本节课要研究的问题。(板书课题:计算圆柱的体积)

二、探究新知:

1、大胆猜想:你觉得圆柱体积的大小和什么有关?

学生猜想,教师出示相应的课件演示,让学生观察,体会圆柱的体积和它的底面积和高,有关系,有怎样的关系。

2、圆柱的体积可能等于什么?(说说猜想依据)

长方体,正方体的体积都等于“底面积x高”猜想圆柱的体积也可能等于“底面积x高”。

(用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。)

学生讨论交流:

(1)把圆柱拼成长方体后,什么变了,什么没变?

(2)拼成的长方体与圆柱之间有什么联系?

(3)通过观察得到什么结论?

得到:圆柱的体积=底面积x高 V=Sh

三、拓展交流

要求圆柱的体积只要找到它的底面积和高就可以,分别讨论知道半径、直径、地面周长,该怎么求出圆柱的体积,总结出公式。

四、练习设计:

1、想一想,填一填:

把圆柱体切割拼成近似(),它们的()相等。长方体的高就是圆柱体的( ),长方体的底面积就是圆柱体的( ),因为长方体的体积=(),所以圆柱体的体积=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圆柱体体积用字母表示为( )

2、判断正误,对的画“√”,错误的画“x”。

(1)圆柱体的底面积越大,它的体积越大。x

(2)圆柱体的高越长,它的体积越大。x

(3)圆柱体的体积与长方体的体积相等。x

(4)圆柱体的底面直径和高可以相等。√

3、分别计算下列各图形的体积,再说说这几个图形体积计算方法之间的联系。

4x3x8

6x6x6

3.14x(5÷2)2x8

=96(cm3)

=216(cm3)

=157(cm3)

4、计算下面各圆柱的体积。

60x4

3.14x12x5

3.14x(6÷2)2x10

=240(cm3)

=15.7(cm3)

=282.6(dm3)

5、这个杯子能否装下3000mL的牛奶?

3.14x(14÷2)2x20

=3077.2(cm3)

=3077.2(mL)

3077.2mL>3000mL

答:这个杯子能装下3000mL的牛奶。

五、课堂小结:谈谈这节课你有哪些收获?

《圆柱的体积》教学设计 篇8

教学目标:

1、知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。

2、方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。

3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。

教学重点和难点:

圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

教具:

圆柱的体积公式演示教具,圆柱的体积公式演示课件

教学过程:

一、教学回顾

1、交代任务:这节课我们来学习《圆柱的体积》。

2、回忆导入

(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?

(2)、我们都学过那些立体图形的体积公式。

二、积极参与探究感受

1、猜测圆柱的体积和那些条件有关。(电脑演示)

2、。探究推导圆柱的体积计算公式。

小组合作讨论:

(1)将圆柱体切割拼成我们学过的什么立体图形?

(2)切拼前后的两个物体什么变了?什么没变?

(3)切拼前后的两个物体有什么联系?

课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)

2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?

3、要用这个公式计算圆柱的体积必须知道什么条件?

三、练习

1、填空

(1)、圆柱体通过切拼转化成近似的( )体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体( ) 。因为长方体的体积等于

(),所以,圆柱体的体积等于()用字母表示

() 。

(2)、底面积是10平方米,高是2米,体积是

()。

(3)、底面半径是2分米,高是5分米,体积是

( )。

2讨论:

(1)已知圆柱底面的半径和高,怎样求圆柱的体积

V=兀r2 × h

(2)已知圆柱底面的直径和高,怎样求圆柱的体积

V=兀(d÷2)2×h

(3)已知圆柱底面的周长和高,怎样求圆柱的体积

V=兀(C÷兀÷2) ×h

3、练习:已知半径和高求体积,已知直径和高求体积。

四、小结或质疑

五、作业

课后做一做第1、2、3题。

板书设计:

圆柱的体积

长方体的体积=底面积x高

圆柱的体积=底面积x高

V=Sh

本节课的设计思考:

一、让学生在现实情境中体验和理解数学

《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

二、鼓励学生独立思考,引导学生自主探索、合作交流

数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。不足之处:

在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。

三、教师的语言非常贫乏

在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。

苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术

是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。

《圆柱的体积》教学设计 篇9

【教材简析】:

本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

【教学内容】:

p19-20页的内容和例题,完成“做一做”及练习三第1~4题。

【教学目标】:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公 式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

3、渗透转化思想,培养学生的自主探索意识。

【教学重点】:

掌握圆柱体积的计算公式。

【教学难点】:

圆柱体积的计算公式的推导。

【教学过程】:

第一课时本册总课时:12 课时

一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、什么叫做物体的体积?你会计算下面那些图形的体积?

3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

(1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)

(2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)

(3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)

(3)通过观察,使学生明确:

长方体的底面积等于圆柱的底面积,

长方体的高就是圆柱的高。

长方体的体积=底面积×高,

所以圆柱的体积=底面积×高,

v= sh

圆柱的体积计算公式是:

v=sh

2、课堂练习:

(1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?

(2)指名学生分别回答下面的问题:

① 这道题已知什么?求什么?

② 能不能根据公式直接计算?

③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)让学生解答和板算,最后师生共同完成.

解:v=sh

=75×90

=675(立方厘米)

答:它的体积是675立方厘米。

3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的(v=π rh)

4.作业:

《圆柱的体积》教案 篇10

新课程观强调:

教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地用教材,而不是简单地教教材。在实际教学中,如何落实这一理念?本人结合圆柱的体积一课谈谈自己的实践与思考。

■ [片段一]

■ 师生共同探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(苏教版第12册P8):一根圆柱形钢材,底面积是20平方厘米,高是1.5米,它的体积是多少?

■ 由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答:

■ 1.5米=150厘米 201150=3000(立方厘米)

■ 师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现:

■ ①20平方厘米=0.002平方米 0.00211.5=0.003(立方米)

■ ②20平方厘米=0.2平方分米 1.5米=15分米 0.2115=3(立方分米)

■ 师:为什么会出现三种结果?

■ 经讨论,学生才明白:从不同的角度去考虑问题,将得到不同的结果。

■ [片断二]

■ 巩固与应用阶段,我将教材练习二中的一个填表题(表1)进行了加工组合呈现给学生这样一个表格(表2)。

■ 表 1

■ 表2

■ 学生填表后,师:观察前两组数据,你想说什么?

■ 学生独立思考后再小组交流,最后汇报。

■ 生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。

■ 生2:两个圆柱的高相等,底面积越大,体积就越大。

■ 师:观察后两组数据,你想说什么?

■ 有了前面的基础,学生很容易说出了后两组的关系。

■ 学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元比例的教学作了提前孕伏。

■ [片段三]

■ 教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?

■ 学生动手测量自备的圆柱形茶杯的有关数据并计算它的体积。

■ 师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。

■ [教学反思]

■ 精心研究教材是用好教材的基础

■ 教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种枷锁,而应作为跳板编者意图与学生实际的跳板。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

■ 1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会从不同的角度去考虑问题,将得到不同的结果的道理,从而学会多角度考虑问题,提高解决问题的能力。

■ 2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的`表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为比例的教学作了提前孕伏。走出了数学教学的只见树木,不见森林的点教学的误区。

■ 落实课标理念是用好教材的关键

■ 能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。关注人是新课程的核心理念。我们的数学教学不能再以学科为中心,而应以学生为出发点和归宿。教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能符合新理念。前两个片段就突破了学科中心和知识中心,走向了学生中心。[片断三]在教材关注学生的基础上向深层发展不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。

■ 学生获得发展是用好教材的标准

■ 有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质一切为了每一位学生的发展。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,以本为本,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。