首页 > 教学教案 > 教案大全 > 圆的周长教案(优秀7篇)正文

《圆的周长教案(优秀7篇)》

时间:

作为一名优秀的教育工作者,通常会被要求编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。优秀的教学设计都具备一些什么特点呢?这次漂亮的小编为您带来了圆的周长教案(优秀7篇),如果对您有一些参考与帮助,请分享给最好的朋友。

圆的周长教案 篇1

教学目标:

1.生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。

3.合圆周率的学习,对学生进行爱国主义教育。

教学重点:

探究圆周长与直径之间的关系,掌握圆周长公式。

教学难点:

理解圆周率的意义,能运用圆的周长公式解决一些简单的实际问题。

课前准备:

多媒体课件、大小不同的圆、线、小尺。

教学过程:

一、教学例4。

1.话交流:同学们,我们经常听人们说:“我买了一个28的自行车。”“我买了一个24英寸的彩电”。这里的“28”和“24英寸”都是表示物体规格的数字。

2.件出示例4题目及图示,全班交流:你从图中了解哪些信息?

3.组交流:从你课前滚动大小不同的圆片的过程中,你有什么发现?

4.件演示车轮滚动,验证学生的'发现。

5.班交流:

你觉得圆的周长和圆的什么关系?(直径越大,圆也就越大,所以周长也越长。因为直径是半径的2倍,所以说圆的周长跟半径也有关。)

二、教学例5。

1.件出示例5,全班交流:这样的实验你们课前做了吗?

2.拿出课前探究圆周长与圆的直径关系实验单,小组交流并演示自己的探究过程和结果。

3.名汇报,全班交流。

⑴ 各小组派一名同学展示实验记录单,介绍实验过程。

⑵ 纵观各组的实验结果,你们有什么发现?

圆的周长总是直径的3倍多一些。

4.生自学课本93页,了解圆周率及我国古代数学家的杰出研究成果。

5.括圆周长公式。

⑴ 圆周率用字母π表示,如果圆周长用字母C表示,直径用字母d表示,谁来说一说π、C、d之间有什么关系?

学生先在小组内交流再全班交流。

(板书:C÷d=π,C÷π=d ,C=πd)

⑵ 求圆的周长用哪个公式?(C=πd或C=2πr)

三、巩固拓展

1.成“试一试”⑴ 学生独立计算。⑵ 全班展示交流。

2.成“练一练”。

3.成练习十四第1题。学生独立计算,再全班交流。

4.成练习十四第2题。

⑴ 学生独立计算。⑵ 全班展示交流。⑶ 学生订正。

5.成练习十四第3题。指名口头列式,学生集体计算。

6.成练习十四第4题。学生独立计算后再汇报交流。

四、总结延伸

本节课,你有哪些收获?还有什么疑问?

板书设计:

圆的周长

《圆的周长》教学设计 篇2

一、教学目标

1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

2.培养学生的观察、比较、分析、综合及动手操作能力;

3.结合圆周率的学习,对学生进行爱国主义教育。

二、教学准备

一元硬币、圆形纸片等实物以及直尺,测量结果记录表

三、教学过程:

<一>、创设情境,引起猜想:

(一)激发兴趣

小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

(二)认识圆的周长

1.回忆正方形周长:

小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

2.认识圆的周长:

那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

每个同学的桌上都有一元硬币,互相指一指这些圆的周长。

(三)讨论正方形周长与其边长的关系

1。我们要想对这两个路程的长度进行比较,实际上需要知道什么?

2.怎样才能知道这个正方形的周长?说说你是怎么想的?

3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

(四)讨论圆周长的测量方法

1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

2.反馈:(基本情况)

(1)“滚动”——把实物圆沿直尺滚动一周;

(2)“缠绕”——用绸带缠绕实物圆一周并打开;

(3)初步明确运用各种方法进行测量时应该注意的问题。

3.小结各种测量方法:(板书)

化曲为直

4.创设冲突,体会测量的局限性

刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?

5.明确课题:

今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

(五)合理猜想,强化主体:

1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答

2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

向大家说一说你是怎么想的。

3.正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

4.小结并继续设疑:

通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

<二>、实际动手,发现规律:

(一)分组合作测算

1.明确要求:

圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系

2.生利用学具动手操作,师巡视指导、收集信息。

3.集体反馈数据(选取3~4组实验结果,黑板板书展示)

(二)发现规律,初步认识圆周率

1.看了几组同学的测算结果,你有什么发现?

2.虽然倍数不大一样,但周长大多是直径的几倍?

板书:圆的周长总是直径的三倍多一些。

(三)介绍祖冲之,认识圆周率

1.这个倍数通常被人们叫做圆周率,用希腊字母π表示。

2.早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

3.这个倍数究竟是多少呢?我们来看一段资料。

(祖冲之是我国南北朝时期,河北省涞源县人。祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位。不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

4.理解误差

看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

5.解答开始的问题

现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

(四)总结圆周长的计算公式

1.如果知道圆的直径,你能计算圆的周长吗?

板书:圆的周长=直径×圆周率

C=πd

2.如果知道圆的半径,又该怎样计算圆的周长呢

板书:C=2πr

追问:那也就是说,圆的周长总是半径的多少倍

<三>、巩固练习,形成能力

1.判断并说明理由:π=3.14()

2.选择正确的答案:

大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()

a.大圆的圆周率大于小圆的圆周率;

b.大圆的圆周率小于小圆的圆周率;

c.大圆的圆周率等于小圆的圆周率。

3.实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

<四>、课外引申,拓展思维

如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

绕8字跑,谁跑的路程近

《圆的周长》教学设计 篇3

教学内容:圆的周长

内容分析:通过帮助学生回忆周长的概念,引出圆周长的概念;接着引出本课研究的问题:圆的周长和直径的关系,通过学生的动手实践活动,得出圆的周长是直径的3.14倍,给出圆周长的计算公式,并介绍了祖冲之和圆周率,最后运用周长公式,加深对公式的理解。

学生起点:对圆和周长的概念已有初步的认识

教学目标:

1、理解圆周长的概念,理解圆周率的意义。

2、使学生掌握圆周长的计算公式及公式的推导过程。

3、以自主探究、小组讨论、合作的形式,培养学生观察、分析和解决问题的能力。

4.结合圆周率的由来,了解祖冲之的故事,对学生进行爱国主义教育。

教学重点:圆周长公式的推导。

教学准备:直尺;两个有厚度、标明直径、不同规格的圆片;棉线。

教学流程:

一、复习引入

1、学生说圆的认识;

(你对圆的知识有哪些了解)

2、揭示课题:

今天我们要一起来学习圆的周长。(板书:圆的周长)

二、新授

1.认识圆的周长;

(1)师拿出圆片让学生指出圆的周长;

(哪一部分是圆的周长)

(2)描出两个规格不同的圆的周长;感受圆的周长;

(请你描出练习纸上两个圆的周长。)

(哪一个周长长?)

(3)揭示圆周长的概念;

(用自己的话说说什么是圆的周长)

师小结:围成圆的曲线的长叫做圆的周长;

围成圆的一周的长叫做圆的周长。(幻灯出示)

2、理解、运用圆周长的测量方法。

师问:圆的周长长短不一,该怎么测量?

生边演示测量圆片周长,边介绍绳测法。

要求学生测量出两个圆片的周长,并把周长和相应的直径填入记录单中。

学生汇报测量结果,师记录。

圆片测量记录单:

3.探究圆的周长与直径的关系。

(1)猜测跟圆周长相关的量;

(猜测一下,圆的周长长短跟什么量有关?)

计算记录单中周长与直径的比值,得数保留两位小数;

学生反馈比值;

周长(厘米)

直径(厘米)

周长与直径的比值(得数保留两位)

(2)认识圆周率

①揭示圆周率:周长与直径的比值都是3倍多一些,其实这个比值是个固定不变的,我们称它为圆周率,用π表示。

(板书:圆周率π)

②幻灯片展示圆周率的由来,学生自主阅读;

总结圆周长的计算公式。

①是不是所有圆的周长都需要经过测量而得到呢?有没有较好的计算方法?

提示:从测量记录单中找取。

②如果周长用C表示,字母式是怎样的?

③周长跟半径又是怎样的关系呢?字母式呢?

(板书:圆周长=圆周率×直径C=πd或

圆周长=2×圆周率×半径C=2πr

三、巩固练习

基本练习

一个圆的直径是10米,它的周长是多少?一个圆的半径是10米,它的周长是多少?判断。

只要知道圆的直径或半径就可以计算圆的周长。()大圆的圆周率大,小圆的圆周率小。()圆周率的值就是3.14.()4圆的周长是直径的倍。()能力拼比:

两个小朋友同时同速从A点到B点,谁先到达?

四、总结:学习了这堂课你有哪些收获?

高一数学教案 篇4

教学目标

1、使学生理解求圆锥体积的计算公式。

2、会运用公式计算圆锥的体积。

教学重点

圆锥体体积计算公式的推导过程。

教学难点

正确理解圆锥体积计算公式。

教学步骤

一、铺垫孕伏

1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)

二、探究新知

(一)指导探究圆锥体积的计算公式。

1、教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验

3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的。

板书:

5、推导圆锥的体积公式:用字母表示圆锥的体积公式。板书:

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习

圆锥的底面积是5,高是3,体积是( )

圆锥的底面积是10,高是9,体积是( )

(二)教学例1

1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

学生独立计算,集体订正。

板书:

答:这个零件的体积是76立方厘米。

2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

(1)已知圆锥的底面半径和高,求体积。

(2)已知圆锥的底面直径和高,求体积。

(3)已知圆锥的底面周长和高,求体积。

4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

(三)教学例2

1、例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

思考:这道题已知什么?求什么?

要求小麦的重量,必须先求什么?

要求小麦的体积应怎么办?

这道题应先求什么?再求什么?最后求什么?

2、学生独立解答,集体订正。

板书:(1)麦堆底面积:

=3.14×4

=12.56(平方米)

(2)麦堆的体积:

12.56×1.2

=15.072(立方米)

(3)小麦的重量:

735×15.072

=11077.92

≈11078(千克)

答:这堆小麦大约重11078千克。

3、教学如何测量麦堆的底面直径和高。

(1)启发学生根据自己的生活经验来讨论、谈想法。

(2)教师补充介绍。

a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径。也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的'直径。

b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得。

三、全课小结

通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

高一数学教案 篇5

一:【课前预习】

(一):【知识梳理】

1.直角三角形的边角关系(如图)

(1)边的关系(勾股定理):AC2+BC2=AB2;

(2)角的关系:B=

(3)边角关系:

①:

②:锐角三角函数:

A的正弦= ;

A的余弦= ,

A的正切=

注:三角函数值是一个比值。

2.特殊角的三角函数值。

3.三角函数的关系

(1) 互为余角的三角函数关系。

sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA

(2) 同角的三角函数关系。

平方关系:sin2 A+cos2A=l

4.三角函数的大小比较

①正弦、正切是增函数。三角函数值随角的增大而增大,随角的减小而减小。

②余弦是减函数。三角函数值随角的增大而减小,随角的减小而增大。

(二):【课前练习】

1.等腰直角三角形一个锐角的余弦为( )

A. D.l

2.点M(tan60,-cos60)关于x轴的对称点M的坐标是( )

3.在 △ABC中,已知C=90,sinB=0.6,则cosA的值是( )

4.已知A为锐角,且cosA0.5,那么( )

A.060 B.6090 C.030 D.3090

二:【经典考题剖析】

1.如图,在Rt△ABC中,C=90,A=45,点D在AC上,BDC=60,AD=l,求BD、DC的长。

2.先化简,再求其值, 其中x=tan45-cos30

3. 计算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○

4.比较大小(在空格处填写或或=)

若=45○,则sin________cos

若45○,则sin cos

若45,则 sin cos.

5.⑴如图①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;

⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小。

三:【课后训练】

1. 2sin60-cos30tan45的结果为( )

A. D.0

2.在△ABC中,A为锐角,已知 cos(90-A)= ,sin(90-B)= ,则△ABC一定是( )

A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形

3.如图,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cosOAB等于__________

4.cos2+sin242○ =1,则锐角=______.

5.在下列不等式中,错误的是( )

A.sin45○sin30○;B.cos60○tan30○;D.cot30○

6.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()

7.如图所示,在菱形ABCD中,AEBC于 E点,EC=1,B=30,求菱形ABCD的周长。

8.如图所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值

9.如图 ,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45方向上,测得B在北偏东32方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米。参考数据:sin32○0.5299,cos32○0.8480)

10.某住宅小区修了一个塔形建筑物AB,如图所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60,求建筑物的高度。(精确0.1米)

高一数学教案 篇6

教学目标:

1、初步掌握圆周长、弧长公式;

2、通过弧长公式的推导,培养学生探究新问题的能力;

3、调动学生的积极性,培养学生的钻研精神;

4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力。

教学重点:弧长公式。

教学难点:正确理解弧长公式。

教学活动设计:

(一)复习(圆周长)

已知⊙O半径为R,⊙O的周长C是多少?

C=2πR

这里π=3.14159…,这个无限不循环的小数叫做圆周率。

由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?

提出新问题:已知⊙O半径为R,求n°圆心角所对弧长。

(二)探究新问题、归纳结论

教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).

研究步骤:

(1)圆周长C=2πR;

(2)1°圆心角所对弧长=;

(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

(4)n°圆心角所对弧长=.

归纳结论:若设⊙O半径为R,n°圆心角所对弧长l,则

(弧长公式)

(三)理解公式、区分概念

教师引导学生理解:

(1)在应用弧长公式进行计算时,要注意公式中n的意义。n表示1°圆心角的倍数,它是不带单位的;

(2)公式可以理解记忆(即按照上面推导过程记忆);

(3)区分弧、弧的度数、弧长三概念。度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧。

(四)初步应用

例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d (精确到1mm).

分析:(1)圆环的宽度与同心圆半径有什么关系?

(2)已知周长怎样求半径?

(学生独立完成)

解:设外圆的半径为R1,内圆的半径为R2,则

d= .

∵,,

∴ (cm)

例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

教师引导学生把实际问题抽象成数学问题,渗透数学建模思想。

解:由弧长公式,得

(mm)

所要求的展直长度

L (mm)

答:管道的展直长度为2970mm.

课堂练习:P176练习1、4题。

(五)总结

知识:圆周长、弧长公式;圆周率概念;

能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题。

(六)作业教材P176练习2、3;P186习题3.

《圆的周长》教学设计 篇7

一、教学内容:圆的周长计算方法与应用

二、教学目的:

1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。

2、培养学生的观察、比较、分析、综合及动手操作能力。

3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

4、结合圆周率的学习,对学生进行爱国主义教育。

三、教学重点:

1、理解圆周率的意义。

2、推导出圆的周长的计算公式并能够正确计算。

四、教学难点:理解圆周率的意义。

五、教学过程:

一、创设情境,引入新课

1、用多媒体出示:龟兔赛跑路线图。

第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

2、师问:

a,小乌龟跑的路程就是正方形的什么?小白兔呢?

b、什么是圆的周长?请你摸一摸你手中圆的周长。

3、师:今天我们就来研究圆的周长。并出示课题

二、引导探究,学习新知

(一)推导圆的周长公式

1、学生讨论

(1)正方形的周长跟谁有关系?有什么关系?

(2)你认为圆的周长和谁有关系?

2、猜测

看图后讨论:圆的周长大约是直径的几倍?为什么?

小结:通过观察大家都已经注意到了圆的周长肯定是直径的2—4倍,那到底是多少倍呢?你有什么好办法吗?

3。动手操作

(1)以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。

师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。

师:看哪一组配合好,速度快,较精确。开始!

(2)整理并填写表格。单位:厘米

测量对象

圆的周长

圆的直径

周长与直径的比值

(3)汇报小结。

师:用实物投影展示整理的表格。

师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些?

(三)认识圆周率、介绍祖冲之

1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。

π≈3.14

2。介绍祖冲之

(四)归纳圆的周长公式

1、怎样求周的长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

师板书:c=πd

2、圆的周长还可以怎样求?由于d=2r则:c=2πr

师板书:c=2πr

师问:圆的周长分别是直径与半径的几倍?

三、巩固应用,强化新知

(1)求下面各圆的周长。

1、d=2米2。d=1.5厘米

(2)求下面各圆的周长。

1、r=6分米2。r=1.5厘米

(二)判断题

1、π=3.14()

2、计算圆的周长必须知道圆的直径。()

3、只要知道圆的半径或直径,就可以求圆的周长。()

(三)选择题

1、较大的圆的圆周率()较小的圆的圆周率。

a大于b小于c等于

2、半圆的周长()圆周长。

a大于b小于c等于

(四)课堂反馈

你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

(五)实践操作

请同学们,画一个周长是12.56厘米的圆,

先以小组为单位讨论:画多大?如何画?再操作。

四、课堂总结,梳理知识

师:通过这堂课的学习,你有什么收获?你还有什么问题吗?