首页 > 教学教案 > 教案大全 > 平行四边形的面积教案(通用3篇正文

《平行四边形的面积教案(通用3篇》

时间:

作为一位兢兢业业的人民教师,很有必要精心设计一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么写教案需要注意哪些问题呢?下面是小编精心整理的平行四边形的面积教案(通用3篇),仅供参考,欢迎大家阅读。

平行四边形的面积教案1

教学目标设计:

1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。

2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。

3、培养初步的推理能力和合作意识,以及解决实际问题的能力。

教学重点:探究平行四边形的面积公式

教学难点:理解平行四边形的面积计算公式的推导过程

教学过程设计:

一、创设情境,激发矛盾

拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的回答,适时板书:长方形面积=长×宽

教师捏住两角轻微拉动长方形框架,使它稍微变形成一个平行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:平行四边形面积=底边长×邻边长

学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。

教师继续拉动平行四边形框架,使变形后的平行四边形越来越扁,到最后拉成一个很扁的平行四边形,提问:这些平行四边形的面积也等于底边长×邻边长吗?

今天这节课我们就来研究“平行四边形的面积”。教师板书课题。

学情预设:随着教师继续拉动的平行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知平衡一旦被打破,学生的思维就想开了闸的洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决平行四边形面积是多少问题?问题出在哪里呢?

二、另辟蹊径,探究新知

1、寻找根源,另辟蹊径

教师边演示长方形渐变平行四边形的过程,边引导学生思考:平行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢?

引导学生思考:原来是平行四边形的面积变得越来越小了,那平行四边形的面积到底与什么有关呢?该怎样来求平行四边形的.面积呢?

学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的积应该也是不变的,但明显的事实是学生看到了平行四边形在越拉越扁,平行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢?

2、适时引导,自主探索

教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把平行四边形转化成长方形来求面积呢?

(1)学生操作

学生动手实践,寻求方法。

学情预设:学生可能会有三种方法出现。

第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开。

第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。

(2)观察比较

刚才同学们把平行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢?

(3)课件演示

是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。

3、公式推导,形成模型

既然我们可以把一个平行四边形转化成一个长方形,那么转化前的平行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出平行四边形的面积怎么计算呢?

先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。

A、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变?

B、拼成的长方形的长和宽与原来的平行四边形的底和高有什么关系?

C、你能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?)

学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下:

长方形的面积=长×宽

平行四边形的面积=底×高

4、变化对比,加深理解

引导学生比较前后两种变化情况,思考:第一次的长方形变成平行四边形与第二次的平行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明平行四边形的面积计算方法的来源呢?为什么?

5、自学字母公式,体会作用

请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的

面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?

三、实践应用

1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)

2、看图口述平行四边形的面积。

3分米,2.5厘米

3、这个平行四边形的面积你会求吗?你是怎样想的?

4、分别计算图中每个平行四边形的面积,你发现了什么?(单位:厘米)这样的平行四边形还能再画多少个?

平行四边形的面积教案2

一、所在班级情况,学生特点分析

本校是一所比较偏僻的山村小学,本班有39名学生,全都是农民的子女。虽然现在农民的生活越来越好,但家长都希望自己的子女学到更多知识,将来有更大的发展,特别重视对学生的教育。因此,学生由于在社会、家庭、学校、教师的重视下,学习兴趣浓厚,能够认真学习,会主动学习,积极与他人合作,共同探索知识的形成过程。

二、教学内容分析

平行四边形面积的教学是在学生已经认识了平行四边形的特征以及长方形和正方形面积计算方法的基础上进行学习的,它同时又是进一步学习三角形面积、梯形面积的基础。学好这部分内容,对于培养学生的空间观念,发展学生的思维能力,以及解决生活中的实际问题的能力,都有重要的作用。

三、教学目标

1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

3、通过教学活动,激发学生学习兴趣,培养互助合作、交流、评价的意识,感受数学与生活的密切联系。

四、教学难点分析

把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形面积计算公式。

教材提示通过剪一个平行四边形纸片来研究如何求平行四边形的面积,而且提供了两种提示性的方法:一种是数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积。使学生在数、剪、拼的学习活动中,通过探索、合作、交流与指导,寻找解决问题的方法。

五、教学课时

一课时。

六、教学过程

(一)复习

1、做一做,说一说。

师:我们已经学习了平行四边形的一些知识,认识了平行四边形的底和高课前,老师要求自己动手,做两个平行四边形,现在拿出一个平行四边形,找出它的,划出它的高,量一量,并表示出来。

学生做—教师巡视—同桌互相评价—个别台前讲说。

2、复习长方形面积计算公式

我们学过长方形面积的计算公式,谁能说出长方形面积的计算公式?

生:长方形面积=长×宽

师:那么平行四边形的面积该怎么计算?这一节,我们就一起来研讨它。

(板书课题)

(二)推导平行四边形的面积公式

1、数方格法:

师:这儿有两个图形,请同学们比较它们的大小。

出示课件(图1):

要比较这两个图形的大小,就是比较它们的面积。我们先用数方格的方法数出它们各自的面积。

教学活动:

(1)数出平行四边形和长方形的面积各是多少?

(2)平行四边形的底和高各是多少?

(3)长方形的长和宽各是多少?

(4)通过数方格,你发现了什么?

(平行四边形的底与长方形的长相等,平行四边形的高与长方形的宽相等。)

上面我们用数方格的方法得出平行四边形的面积,在实际的生活中,要求的平行四边形的面积很大时,比如,一块平行四边形的果园,用数方格的方法就难以解决了。因此,我们能不能把一个平行四边形转化为我们已经学过的某一种图形,从而得出平行四边形面积的计算方法呢?

2、割补法:

(1)学生用学具演示。

师:同学们拿出另一个平行四边形,想一想,做一做,怎样才能把它转化成为一个长方形?

教学活动:

学生用学具做,同桌进行互相交流转化过程,边演示边述说,教师巡视指导。

(2)教师用教具演示。

同学们完成的真好,现在我们共同来演示怎样将一个平行四边形转化成一个长方形的呢?

出示课件(图2)。

教学活动:

在演示过程中,应尊重学生的观点,教师进行适当引导,坚持以学生为主体,生生互动,师生互动的原则,激发学生的学习积极性。

3、推导、归纳平行四边形的面积计算公式:

把一个平行四边形转化成一个长方形,什么变了,什么没变?

(形状变了,面积没有变。)

也就是说拼成后长方形的面积和原平行四边形的面积相等。

拼成后的长方形的长与平行四边形的底有什么关系?(相等)

长方形的宽和原平行四边形的高有什么关系?(相等)

在问答过程中,出示课件(图3)。

师:拼成后的长方形的长与原平行四边形的底相等,长方形的宽与原平行四边形的高相等,它门的面积也相等。我们知道长方形的面积是长乘宽,谁能说出平行四边形的面积怎样求?(平行四边形的面积等于底乘高。)

板书:平行四边形的面积=底×高

请看课件(图4):

如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形面积的字母公式该怎样表示呢?

学生口述,教师板书:

S=a×h

师:一般含有字母的式子里,乘号可以用“·”表示,读作a乘h,板书:

S=a·h

也可以把乘号省略不写,板书:

S=ah

学习活动:

将上面公式请同桌同学互相说说。

(通过同学相互述说,既弄清了平行四边形的面积、底、高之间的关系,又培养了学生的口头表达能力。)

要计算平行四边形的面积,必须知道几个条件,是什么?

(两个条件,底和高。)

七、课堂练习

1、运用公式,尝试学习。

师:请同学们打开课本24页,看“试一试”题目:

出示课件(图5)。

(在学生独立完成之后,与同学们说说各自的想法、做法,征求同学们的意见。)

2、巩固练习,拓展学习。

(1)选择正确的答案。

出示课件(图6)。

师:在上面A、B、C三个平行四边形中哪一个的面积是:2×3=6(平方厘米),并说出理由。

A:错误,因为3和2是两条邻边,不是对应的底和高;

B:错误,因为底3和高2不对应,也就是说高2不是底边3上的高;

C:正确。

(通过练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。)

3、操作观察,探究学习。

出示课件(图7)。

如上图,分别计算图中每个平行四边形的面积,你发现了什么?(单位:cm)

(引导学生通过计算、观察、比较等,发现平行四边形底和高相等时面积也一

定相等。)

讨论:

当两个平行四边形的面积相等时,它们的底与高是否也相等?

(平行四边形的面积相等,底与高却不一定相等。)

八、作业安排

课本24页“练一练”,第3题、4题。

九、附录(教学课件)

十、教学反思

平行四边形的面积是北师大版五年级数学上册第二单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式。因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。

课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是不尽人意的。

平行四边形的面积教案3

【设计理念】

本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容

【教学内容】

《义务教育教科书》人教版数学课本五年级上册87——88页。

【教材、学情分析】

平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。

学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。

【教学目标】

1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。

2、在探究的过程中感悟“转化”的数学思想和方法。

3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。

4、引领学生回顾反思,获得基本的数学活动经验。

【教学重点】

推导平行四边形面积计算公式。应用公式解决实际问题。

【教学难点】

理解平行四边形的面积计算公式的推导过程。

【教学准备】

平行四边形纸片若干,直尺、剪刀。

【教学过程】

一、创设情境,激发兴趣。

讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。

【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】

二、组织探究,推导公式。

1、联系旧知,做出猜想。

看到这个题目,你想到了我们学过哪些有关面积的知识?

大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?

【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】

2、初步验证,感悟方法。

根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。

引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)

学生数方格并来验证自己的猜想。

【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】

3、剪拼转化,发现规律。

除了数方格,我们还能用什么方法来验证呢?(学生思考)

能否将平行四边形转化成我们学过的图形再来进行计算呢?

(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。

(2)展示交流。(演示)

【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】

4、观察比较,推导公式。

剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?

小结:长方形面积=长×宽

平行四边形面积=底×高

S=a×h

【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】

5、展开想象,再次验证。

是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?

学生先闭眼想象,再借助手中的工具加以验证。

6、回顾反思,总结经验。

回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。

把平行四边形转化成长方形面积。(剪拼—转化)

然后找到转化前、后图形之间的联系。(寻找—联系)

根据长方形面积公式推导出平行四边形面积公式。(推导—公式)

【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】

三、实践应用,解决问题。

1、解决实际问题

平行四边形花坛底是6米,高是4米,它的面积是多少?

2、出示如下图

算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

王大爷:43×23,李大爷43×20,请你判断一下,谁对?谁错?

4、现在你明白阿凡提是怎么打败巴依的了吗?

引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。

思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?

【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】

四、总结全课,拓展延伸。

转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。

通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。

【设计意图:试图把学生带入更加广阔的学习空间。】

五、板书设计

平行四边形的面积

长方形面积=长×宽

平行四边形面积=底×高

S=a×h