《《分数乘整数》教案优秀7篇》
作为一名教职工,时常需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。我们该怎么去写教学设计呢?下面是的小编为您带来的《分数乘整数》教案优秀7篇,希望能够给予您一些参考与帮助。
分数乘整数教学设计 篇1
一、教学目标
1、经历总结规律和探索分数除以整数的计算方法的过程。
2、掌握分数除以整数的计算方法,会计算分数除以整数。
3、积极参与数学活动,感受数学与生活的密切联系,激发数学学习的兴趣。
二、学情分析
学生们在前面的学习已经知道了整数除法的意义及其计算方法,在本册知道了分数乘法的意义、计算方法和求一个数的倒数的方法,这些已有的知识为学生探索本课新知打下了坚实的基础。,学生运用折纸的方法探索分数除以整数的计算方法。学生在“玩”的过程中能够感知分数除以整数的基本算理,进而归纳出分数除以整数的计算方法。
三、重点难点
教学重点:分数除法的计算方法,会计算分数除以整数的除法。
教学难点:探索分数除以整数的计算方法。
四、教学过程
活动一(复习探索)
1复习切入:有一只小青蛙想要找到自己的妈妈,必须要通过这难题一道道的难题闯关,你愿意帮它找到妈妈吗?
通过上面的练习老师知道同学们的本事真不小,接下来老师要考考你,看看你有没有和孙悟空火眼金睛的本事。
2观察规律:观察每一组的两个算式,你发现了什么?(给学生观察的时间)
学生小组内谈谈你的发现。(教师倾听巡视)
学生谈发现,试着用一句话概括一下发现。
3教师小结:一个数除以另一个数(师板书)0除外,就等于数这个乘另一个数的倒数。
你们果真有火眼金睛的本事,发现了数学中的一个规律。
我们刚才发现整数除以整数,就等于整数乘这个数的倒数。那这个规律适用于分数除法吗?
活动二(发现规律)
探索新知
1、学生猜一猜。到底是不是像同学们想得那样呢?我们以分大饼饼为例,试着想一想。(出示,指生读题)
2、二分之一张是什么意思?把它平均分成3份又是什么意思?(生:二分之一张就是半张;把它平均分成3份就是把半张披萨平均分成3份。)?教师提问:把半张披萨平均分成3份,每份是整张披萨的几分之几?你能列出算式吗?生列式。
3、请大家拿出课前准备好的圆形纸片,折一折涂,看看每份是整张的几分之几?开始。
4、生动手操作。教师巡视。集体交流(找几人说说想法。)
师:刚才,我们通过动手操作,知道了,那计算你会吗?。师生共同交流,教师板书。
做到这,咱们看看,刚才咱们发现的规律适用于分数除法吗?生说。
5、总结:分数除以一个数(0除外)等于分数乘这个数的倒数。(出示)
读一读,记一记你的发现
活动三(练习巩固)
1、初步练习(两道基本的习题巩固所学)
2、趣味练习(通过打气球的游戏进一步加深练习)
3、你是不是会利用今天学到的知识解决生活中的问题。
第1题,学生读题,师生一起借助线段图分析题意,然后学生自己列式计算,并交流计算过程。
第2题六一儿童节期间,学校用了
平方米的红布做了一块4米长的宣传标语。这块标语的宽是多少米?自己读题。这个问题你能解决吗?想一想为什么用除法列算式?
活动四(课堂小结)
通过今天的学习,你有什么收获?
分数乘整数教学设计 篇2
教学内容:P39-40例2,“练一练”,练习八第6-11题
教学目的:
1、让学生理解求一个数的几分之几是多少可以直接用乘法来计算
2、促使学生加深对相关数量关系的理解,提高解决简单实际问题的能力 教学重点难点:使学生理解求一个数的几分之几是多少可以用乘法来计算 教学资源:例2的图、小黑板 教学过程:
一、导入
1、出示例2 学生看图理解题意 说说题中两个分数的具体含义 明确:以10朵绸花为单位“1”,红花的朵数是10朵的1/2,绿花的朵数是10朵的2/5
二、探索
1、学生尝试解决第(1)个问题,求红花的朵数 学生交流解决方法,明确求红花的朵数可以用除法来计算,还可以用乘法计算 由此列出乘法算式,并让学生再次算出结果
2、解决第(2)个问题 先让学生在图中按要求圈一圈 理解:求绿花有多少朵,就是把10朵花平均分成5份,求这样的2份是多少 让学生已有的知识来解答 交流:求10多的2/5是多少,也可以用乘法来计算
3、引导学生比较两种计算方法 使学生明白:10朵的2/5,也就是把10朵花平均分成5份,求这样的2份是多少 计算10*2/5时,要先约分,实际上也就是先用10/5,求出1份是多少,再乘2求出2份是多少
4、小结:求一个数的几分之几是多少,可以用乘法计算
5、“练一练” 第1题先让学生根据题意涂色,在列式计算 第2题先让学生理解题意,再填空
三、练习
1、练习八第6题 先让学生独立解答后再交流,比较,教案 分数与整数相乘,教案《教案 分数与整数相乘》。
体会到:求一个数的几分之几是多少与求几个相同数连加的和,都可以用乘法来计算
2、练习八第7题 学生先独立计算再交流
3、练习八第8题 学生独立解答并说说是怎样思考的
4、练习八第9题 先理解:表中的分数都是与四月份的天数比较后得到的,都以“30天”作为单位“1”。 估计天数的多少,可以直接比较分数几个分数的大小。 将计算结果与估计结果进行比较,看估计是否正确。
5、练习八第10题 先让学生看图计算,再组织学生说说三个问题有什么相同的地方。
6、练习八第11题 学生先独立解答,再进一步思考:如果不计算,你能比较出参加三项比赛的人数哪一项最多,哪一项最少吗?
四、全课总结
分数乘整数教学设计 篇3
教学目标
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学重点
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学难点
引导学生总结分数乘整数的计算法则。
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5 个12 是多少?10 个23 是多少?25 个70 是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法: + + = = =
×3 这个算式表示什么?为什么可以这样计算?
教师板书: + + = ×3=
为什么只把分子与整数相乘,分母10 不和3 相乘?
二、提出问题
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3 人一共吃多少块?
1、读题,说说 块是什么意思?
2、根据已有的知识经验,自己列式计算
三、解决问题
(一)学生汇报,并说一说你是怎样想的?
方法1 : + + = = = (块)
方法2 : ×3= + + = = = = (块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的。
区别:一种方法是加法,另一种方法是乘法。
教师板书: + + = ×3
(三)为什么可以用乘法计算?
加法表示3 个 相加,因为加数相同,写成乘法更简便。
(四) ×3 表示什么?怎样计算?
表示3 个 的和是多少?
+ + = = = = ,用分子2 乘3 的积做分子,分母不变。
(五)提示:为计算方便,能约分的要先约分,然后再乘。
四、归纳、概括:
(一)结合 = ×3= 和 + + = ×3= ,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算。
(二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。
五、拓展应用
(一)基本练习
1、改写算式
+ + + = ( )×( )
+ + + + + + + = ( )×( )
2、只列式不计算:3 个 是多少? 5 个 是多少?
3、计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
(二)综合练习
应用题
(1 )一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2 )美术馆要进行美术展览,有5 张画是边长 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(三)拓展练习
1、一条路,每天修 千米,4 天修多少千米?
2、一条路,每天修全路的 ,4 天修全路的几分之几?
六、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
例1、小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3 人一共吃多少块?
用加法算: + + = = = (块)
用乘法算: ×3= + + = = = = (块)
答:3 人一共吃了 块。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
《分数乘法》说课稿 篇4
一、说教材
(一)教材地位及作用
1、地位
《分数乘法》是人教实验版六年制上册第二单元的分数乘法的第一课时的内容。这部分内容的学习是在学生已经学习了整数乘法的意义和分数加法计算的基础上进行的。在这个内容中,分数乘整数的意义和整数乘整数的意义相同,都是求几个相同加数的和的简便运算,只是这里的相同加数变成了分数,同时分数乘整数又是分数乘分数、分数乘加、乘减混合运算的基础,因此必须使学生切实掌握好。
2、作用
本部分教材内容是继以前学过的分数的加法和减法后的又一分数运算,它既与整数的乘法有着内在的联系,也是后期进一步学习分数乘以分数的乘法的基础。
(二)教学目标
依据《课标》的要求,结合我对教材的理解和对学情的分析,确定了以下教学目标:
1、知识与技能:能理解分数乘以整数的计算法则,熟练掌握它的运用。
2、过程与方法:创设故事情景,导入问题,引入新课;在教学过程中,通过学生的自主操作和探究,探寻分数乘法的意义,总结出分数乘以整数的计算法则;并利用课堂习题练习和闯关练习题,使学生在实际解题中理解和掌握其运算法则,以及熟练计算涉及约分与化简的计算题,,以及运用所学知识解决实际问题的能力,渗透数形结合的数学思想
3、情感态度与价值观:通过情境故事进入课堂问题,使学生感受生活中处处有数学,进一步激发学生的学习兴趣。
(三)教学重点与难点
根据教学大纲的要求和教学目标,以及我对学情的分析,确定了以下重难点。
重点:掌握分数乘以整数的计算法则,并会在计算题中加以运用。
难点:在计算分数乘以整数的式子中,涉及约分与化简的计算题的运算。
二、说教学法
(一)说教法
为了完成以上教学目标,突出重难点,根据本阶段学生的认知特点和本节课教学内容,我在课前准备了线段单位“1”纸和PPT两种教具。在整节课我将采用以下教学方法:
1、问题导入法:创设问题情境,由一个关于分数乘以整数的计算问题引出本节课主题“分数乘法——分数乘以整数”;
2、演示法:在解决问题中,运用直观的教具,使学生理解题意,从而解决袋鼠与人速度问题。
3、讨论法:让学生们根据计算的过程和结果自己总结计算法则,以培养学生合作意识,增强学生语言表达能力;
4、练习法:在随堂练习的习题中,强化学生对本节内容的理解,从而熟练掌握分数乘以整数的计算法则,并学会在实际问题中解题和做到举一反三以强化新知。
多种教学手段有机地贯穿于教学各环节中,引导学生在感知的基础上加以抽象概括,充分遵循了(从)感知→(经)表象→(到)概念这一认知规律。
(二)说学法
根据新课程改革提出的理念及本节课的教学内容,我打算指导学生运用以下学习方法:
1、计算总结:让学生通过自己计算和讨论总结概括出分数计算的运算法则;2、运用讨论法、练习法等方式,让学生在大量的实际习题中掌握知识,把文字知识运用于解题中进行掌握,从而进一步调动学生的学习兴趣。努力做到教学做合一,以学生为主体,教师为主导的教学理念,使全体学生都能参与探索新知的过程。
三、说教学过程
本节课分六个教学环节:问题导入、探究新知、巩固练习、课堂总结、布置作业和板书设计。
(一)问题导入
通过讲动物世界中的袋鼠速度与人的速度问题,引入本节课主题“分数乘法”,进而激发学生学习的兴趣。问题如下:人跑一步的距离相当于袋鼠跳一下的2/11,那么人跑三步的距离是袋鼠跳一下的几分之几?
我将引导学生理解题意,带领学生一起解决问题,计算出过程和结果,发现用学过的知识不能计算出分数乘以整数的式子时,从而引出本节课新内容——分数乘以整数。
(二)探究新知
这一环节,分三步走:
1、总结分数乘以整数计算法则
从日常的生活中引入数学问题,使学生感受到数学知识的日常化、生活化。课件展示袋鼠与人速度问题图,带领学生们一起理解题意,解决问题。然后将让同学们分小组交流,根据黑板上的分数相加以及分数乘以整数的两个式子,讨论总结出计算法则。接着我再根据学生的汇报,进行总结,板书出分数乘以整数的计算法则为:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。
2、分数乘以整数计算法则的意义
在总结出分数乘以整数的计算法则后,趁热打铁,让学生们观察两个式子,找出区别,然后总结出,运用分数乘以整数的计算法则意义为:运用分数乘以整数的计算法则进行计算,将会使得计算更为简洁和准确快速。
3、随堂练习引出约分和化简计算题
在学习了分数乘以整数的计算法则后,将进行随堂练习,进而巩固知识,也为接下来要学习的涉及约分和化简的计算做铺垫。我将展示以下练习题:
前两道题为基础分数乘以整数练习,后两道题会涉及约分,在由学生们自己的计算中总结出与前面习题不一样的地方,接着我将顺势指出其特别的计算,这道题与前三道题的不同之处在于它会涉及约分,这是本节课又一知识点,即:涉及能约分的分数乘以整数的计算中,要先约分,最后结果为假分数的要化成整数和带分数。
由学生们自己在实际计算中总结出知识点,也能培养学生们观察能力和解题能力以及将知识运用于实际解题中的能力。
(三)巩固练习
练习是帮助学生加深理解和巩固认知的手段,是培养和提高学生的良好心理素质的途径,整节课上我设计了有针对性、层次感强的练习。
1、基本练习:
在基本练习中,一共涉及四道题,分别是一道不涉及任何约分的计算题、涉及直接约分的计算题以及最简结果为整数和最简结果为带分数的两道计算题。如下:
2、提高练习
在提高练习中,我将用一道应用题(题如下)来进行巩固练习,应用题是六年级的学生常见的题型,这道题的练习不仅能帮助学生锻炼解答应用题的能力,也引出延伸知识,即:在分数与多个整数相乘的计算中,分数乘以整数的计算法则同样适用。
这些练习题难度由简到难,层层深入,具有针对性,有利于学生对不同类型习题的掌握,也进一步的理解和巩固了本节课的知识。
(四)课堂总结
让学生谈谈本节课的收获和体会,使学生体验到探究成功的乐趣,树立学好数学的信心。
本节课课堂内容为:
1、分数乘以整数的计算法则为:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。
2、涉及能约分的分数乘以整数的计算中,要先约分,最后结果为假分数的要化成整数和带分数。
(五)布置作业
1、课后练习题第二题
练习题可以帮助学生们加深对所学知识的理解,并能够运用于实际解题中,做到学以致用。
2、预习教材第10页的内容——分数乘以分数。
让学生们由今天所学知识联系下节课新内容,即分数乘以分数的运算,帮助学生们养成课前预习的好习惯,也能培养他们对知识的迁移学习能力,和对知识举一反三的学习能力。
(六)板书设计
分数乘法
—分数乘以整数
分数乘整数计算法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变
整节课的板书如PPT所示,其中“分数乘以整数的计算法则”重点突出,
整个板书的形成既是老师教学思路的展现,也是学生学习思路的体现,既是学生学习的主要内容,也学生进行自主评价的一种缩影。
以上是我对本节课一些粗浅的认识和看法,敬请老师批评指正。
分数乘整数教学设计 篇5
教学目标:
1、让学生在已有的分数加法的基础上,通过小组合作,自主探究建构,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。
3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。教学重点:让学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:总结分数乘整数的计算方法。
教学过程:
一、创设情境,提出学习目标。
1、 创设情境:同学们,谁敢与老师比一比,看谁列式列得比较快?
比赛题目为:3个 3/10 相加的和是多少?6个 3/10 相加的和是多少?
师:同学们的表现真是太棒了?这节课我们就一起来研究有关《分数乘整数》的数学问题?
2、提出学习目标
让学生先说一说,再出示学习目标:
(1)分数乘整数的计算方法。
(2)分数乘整数的意义与整数乘法的意义是否相同。
二、展示学习成果
1、小组内个人展示
学生独立自学课本8—9页例1、例2,完成“做一做”(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)
2、全班展示
(1)算法展示。
生1:利用乘法与加法的关系进行计算。
2/15×4=2/15+2/15+2/15+2/15=8/15
生2:先计算出结果,再进行约分。
5/12×8=5×8/12=40/12=10/3=
生3:在计算过程中能约分的先约分,再计算。
2×3/4=3/2 2与4先约分,再计算。
(2)比较三种计算方法,选择最优算法。
通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
(3)错例展示:
错例1:学生把整数与分子进行约分。 错例2:学生没把计算结果约成最简分数。
3、学生质疑问难,激发知识冲突。
(1)针对同学的展示,学生自由质疑问难。
(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?
4、引导归纳分数乘整数的计算法则。
分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变;能约分的先约分,再计算。
三、拓展知识外延
1、完成课本12页练习二第1、2题。
2、生活中的数学
(1)一个正方形的边长是 4/3dm,它的周长是多少dm?
(2)老师从家到学校要步行10分钟, 如果每分钟步行 2/25千米,老师每天要走两个来回,每天一共要走多少千米?
四、总结反思,激励评价。
五、布置作业:
1、列式计算
(1)3个2/5是多少?
(2)7/12的6倍是多少?
(3)5/14扩大7倍以后是多少?
( 4)3/16与24的积是多少
2、智力冲浪:用12个边长都是 dm的正方形硬纸板可以拼成多少种形状不同的长方形?它们周长分别是多少?(A类同学做)
《分数乘整数》教案 篇6
教学目标:
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
重点难点:
学习重点:理解并掌握分数与分数相乘的计算方法。
学习难点:分数与分数相乘计算方法的探索过程。
课前准备:
教学过程:
一、布置要求,引导预学
1.复习迎新
口头列式
(1)80的 是多少? (2) 的 是多少?
二、预习反馈,诊断查学
课中进行预习反馈,教师根据学生的反映有针对性地调整教学。
三、目标引领,探究导学
(一)、创设情境
以前我们学习了分数的意义,下面请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?随着学生的回答,教师继续对它们进行操作,并引出新课
(二)、组织探究
1、教学例4 出现教材中的图形
然后问:画斜线部分是12 的几分之几?又是这个长方形的几分之几?
由此明确:12 的14 是18 ,12 的34 是38
启发学生进一步思考:求12 的14 是多少,可以怎样列式?求12 的34 呢?
师问:你能列算式并看图填写出书中的结果吗?
打开书P45完成
提示:根据填的结果各自想想怎样计算分数与分数相乘?
学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母
2、教学例5
(1) 让学生说说23 ×15 和23 ×45 分别表示23 的几分之几?你能用前面得出的结论 计算这两道题吗?学生试做订正完后问:你能用什么方法来验证你的`计算结果呢?
(2)验证比较
让学生在自己准备的长方形纸上先涂色表示23 再画斜线表示23 的15 和23 的45
学生动手操作,教师巡视对学困生进行指导,看看操作的结果与你计算的结果是否一致? 学生观察比较
3、归纳总结
比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?得出分数乘分数的计算方法:分数乘分数 ,用分子相乘的积作分子,分母相乘的积作分母。
(三)、练习
1、完成P46的试一试
提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算通过交流进一步明确计算分数与分数相乘的计算方法
四、分数与分数相乘的计算方法的推广
同学们,下面着几道题你回计算吗?
出示:211 ×3= 4×56 =
请同学们先完成P46的填空,提醒学生把整数看作分母是1的分数来计算
讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么? 学生分组讨论
明确:(1)整数可以看作分母是1的分数,所以分数与分数相乘的计算方法也适用于分数和整数相乘
(2)实际计算时可以直接按以前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便
(3)也可以整数与分数直接进行约分后再计算。这样更简便教师进行示范如P46
2、练习完成P46的练一练
引导学生用直接约分的方法进行计算
四、巩固练习,反馈练学
1、做练习九的第1题 先在图中画一画再列式计算
2、做练习九的第3题说出错的原因
3、做练习九的第4题看谁算的最快
五、课堂总结,拓展思学
全课小结通过这节课的学习,你有什么收获?还有什么疑惑?
板书设计:
分数乘分数
教后记:
分数乘整数教学设计 篇7
一、教学内容
人教版小学数学六年级上册第二单元第一课时的内容《分数乘法》的第一课时“分数乘以整数”。
二、教学目标
1、知识与能力:在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、情感与态度:通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、过程与方法:引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
三、教学重点、难点
重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
难点:引导学生总结分数乘整数的计算法则。
四、教学准备
ppt课件
五、教学过程
(一)问题导入
1、故事科普知识导入问题
师:同学们,你们喜欢看《动物世界》吗?
生:回答。
师:前几天老师看了一种动物,叫袋鼠,说它身高有两米六,一跳可达6—7米,世界上最快的袋鼠一跳可达12米。是不是很快啊,我们人一步可以走多远呢?我们的速度是不是比起袋鼠就要慢很多啊,今天老师这儿就刚好又一个关于人和袋鼠的速度问题,我们一起来看一下。(ppt展示如图)
2、袋鼠问题引入分数乘以整数
(1)老师引导学生看图
师:我们知道。在做应用题时,要先看题理解题意,那么我们一起来看一下。我们首先理解已知的题意“人跑一步的距离相当于袋鼠跳一下的几分之几?”也就是说可以把袋鼠跳一下的距离看做一整条线段即单位“1”。然后把这条线段平均分成11份,其中的2份就表示人跑一步的距离。(老师板书线段,拿出单位“1”的线段教具,标记其中2线段,作为人跑一步的距离。)
(2)引导学生根据线段图理解
师:人跑一步是袋鼠跳一下的2╱11,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”应该怎样求呢?
生:就是求3个2╱11相加是多少?
师:对,也就是列式子表示为:2/11+2/11+2/11=
(同学们计算出答案为6╱11)
师:我们以前学过,几个相同的数相加,还可以怎样表示呢?
生:可以表示为:2/11×3
师:对,我们还可以表示为2╱11×3,那么像这样的分数乘以一个整数的式子应该怎样计算呢?今天我们就来学习新内容——分数乘法。(PPT播放题目页面,内容为“分数乘法——分数乘以整数”。)
(二)探讨新知
1、分数乘以整数的法则。
(1)导出计算方法。
紧接刚才的袋鼠与人速度问题,回到刚才的计算,老师继续引导解决。
师:(指着板书上的式子“2/11×3”)你们会计算吗?我们一起来看看。我们知道“2/11×3”与“2╱11+2╱11+2╱11”是相等的,所以2╱11×3=2╱11+2╱11+2╱11=2+2+2╱11=2×3╱11=6╱11。(老师板书计算)
师:我们计算出了答案,请大家一起来观察一下。板书如下:
=6╱11
看看你们能不能发现什么,看着黑板上的计算过程及结果,你们能总结出分数乘以整数的计算法则吗?现在前后左右四人为一组,小组讨论一下,时间为一分钟,看看哪个小组总结的又快又准确。
(同学讨论中……,老师走下讲台,询问同学们讨论情况。)
(2)归纳法则。
师:好了,我们的讨论时间到了,同学们得出结论了吗?通过以上计算和讨论,你们知道了分数乘以整数应该怎样计算吗?
生:同学们分享自己的结论。
师:同学们都说的非常好,现在老师总结一下。展示ppt如下:
分数乘以整数,就是用分数的分子和整数相乘的积作分子,分母不变。
(老师板书,同学们朗读并记忆。)
(3)应用法则意义以及掌握计算。
师:我们通过计算和讨论得出了分数乘以整数的计算法则,那么现在我们来看一看这两种方法有什么不一样吗?这两种方法哪种简单?为什么?
生:回答。