《一元二次方程的教案设计【优秀8篇】》
作为一名教学工作者,总归要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。那要怎么写好教案呢?这次为您整理了一元二次方程的教案设计【优秀8篇】,如果能帮助到您,小编的一切努力都是值得的。
九年级数学《一元二次方程》教案 篇1
一、教材分析:
1、本章的主要内容:
(1)一元二次方程的有关概念;
(2)一元二次方程的解法,根的判别式及根与系数的关系;
(3)实际问题与一元二次方程。
2、本章知识结构图:
3、教学目标:
(1)以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;
(2)根据化归的思想,抓住“降次”这一基本策略,掌握配方法、直接开平法、公式法和因式分解法等一元二次方程的基本解法;
(3)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
4、本章的重点与难点
本章学习的重点:一元二次方程的解法及应用一元二次方程解决实际问题。
难点:
(1)分析方程的特点并根据方程的特点选择合适的解法;
(2)实际背景问题的等量分析,设元列一元二次方程解应用题。即建立一元二次方程模型解决实际问题,尽管已经有了运用一次方程(组)解应用问题的经验,但由于实际问题涉及的内容广泛,有的背景学生不熟悉,有的问题数量关系复杂,不易找出等量关系。同时,还要根据实际问题的意义检验求得的结果是否合理。
二、教学中应注意的问题:
1、重视一元二次方程与实际的联系,再次体现数学建模思想。
方程是刻画现实世界的有效数学模型,因而方程教学关注方程的建模过程。教科书的第1节就是想通过多种实际问题的分析,经历模型化的过程,并在此基础上抽象出数学概念。当然,在教学中除教科书第1节、第5节提供了大量的实际问题外,教师还应根据学生生活实际和认知水平,创设更为丰富、贴近学生的现实情景,并引导学生分析其中的数量关系,建立方程模型。在经历多次这样的数学活动,使学生感受到方程与实际问题的联系,领会数学建模思想,增强学生学习数学的兴趣和应用意识,培养学生分析问题、解决问题的能力。
2、本章为学生提供了许多活动,教学中应让学生进行充分的探索和交流。
如在一元二次方程解法的教学中,教师不要采用先示范,然后让学生模仿的方法,而应通过恰当的引导,鼓励学生先独立探索解法,并相互交流。在一元二次方程应用的教学中,应鼓励与提倡解决问题策略的多样化,学生的解法只要合理,就给以肯定,不必拘泥于教科书的解法。
3、注重数学思想方法的渗透。
数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的,这样的抽象是一个逐步深入的过程。方程是含有未知数的等式,它们表达了数量之间的相等关系。正如前面所学习过的其他方程,一元二次方程可以表达许多实际问题中包含的数量相等关系,因而也可以作为分析和解决这些问题的重要数学模型。从反映方程与实际问题的密切联系的角度看,本章与本套教科书前面有关方程的各章是一脉相承的,实际问题情境始终贯穿于本章之中。
这就是所谓的“数学化”过程,其中渗透了符号化和数学建模思想,列方程解决实际问题时,要首先分析题意,找出题中的等量关系。分析过程中,借助示意图或表格常常能使抽象的数量关系具体化、形象化,把数与形结合起来是解决数学问题的一个有效的思想方法。
解一元二次方程的每一种方法都渗透着“转化”思想。开平方法、因式分解法通过“降次”,把一元二次方程转化成两个一元一次方程来解;配方法把方转化成的形式,这是数学形式的转化;而公式法直接利用公式把方程中的“未知”转化为“已知”。这种思想,学生可以运用旧知识来解决新问题,把“不会”变为“会”,它在将来学习二次函数、二次不等式等知识时具有广泛的应用,在教学中,教师应注意引导学生体会这种思想。
4、重视一元二次方程的特殊性,突出解一元二次方程的基本策略以及解法中的关键步骤。
在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),并且学习了可以化为一元一次方程的分式方程,他们对于解方程的基本思路(使方程逐步化为的形式)已经比较熟悉,按照这种思路可以继续考虑一元二次方程的解法。
一元二次方程与前面的方程相比,特点在于未知数的次数是2(二次),新的问题是如何将一元二次转化为学过的一元一次方程,这就是“降次”及“转化”的思想。
5、注意把握教学要求。
在一元二次方程解法的教学中,应避免过多地求解没有实际背景的一元二次方程,进行单纯的形式化的重复操练,应注意将知识技能的培养寓于实际应用问题的解决过程中。
关于一元二次方程根的判别式、一元二次方程根与系数的关系,根据《课标》要求,教学中只做适当的补充。
三、教学建议:
22.1一元二次方程:
本节1课时,以实际问题为背景,引出一元二次方程的概念,归纳出一元二次方程的一般形式;给出一元二次方程根的概念,并提出一元二次方程的根是两个;根据方程的根与方程的关系,再次理解代入法。
教学目标:通过实际问题了解一元二次方程的定义及一般形式;会将一个整式方程化为一元二次方程的一般形式,并能指出二次项及二次项系数、一次项及一次项系数和常数项。
教学重点:一元二次方程及有关概念的理解。
教学难点:准确的化为一元二次方程的一般式,将根代入原方程这种数学方法的理解。
教、学法建议:课前让学生完成自学内容。
(1)一元二次方程的定义关键点:整式方程、只含一个未知数、未知项最高次数为2。
(2)对一元二次方程定义的理解时,一定注意“a≠0”这一条件。
(3)用列举法探索一元二次方程的根是对一元二次方程精确求解的一种探索和补充,在教学中让学生独立尝试,强调学生的自主学习,注重合作交流,提高学生观察、分析和创新的能力。
注意点:①当a是负值时,一般转化为正数;
②增加b=0或c=0或b、c同时为0的特例;
③注意联系实际学习,避免就概念理解概念。
22.2降次---解一元二次方程
直接开平方法、配方法、公式法和因式分解法是一元二次方的基本解法,解二次方程的基本策略是降次。首先通过简单的一元二次方程,引导学生认识直接开平方法解方程;然后讨论比较复杂的一元二次方程,通过对比已变为完全平方式的方程,使学生认识配方法的基本原理并掌握其具体方法;以配方法为基础推导一元二次方程的求根公式,于是得到公式法。最后讨论因式分解法。
教学目标:理解和掌握一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法。
教学重点:一元二次方程的解法。
教学难点:针对不同方程,选择合适的解法。
教、学法建议:
(1)直接开平方法:初二已学过平方根和算术平方根,学习时注意由浅入深进行。
(2)配方法:配方法在数学中成为一种很重要的数学变形,它隐含了创造条件实现化归的思想,这种思想对培养学生的数学能力影响很大。在教学中,对配方法和划归思想应充分重视,给学生提供充足的时间探索,充分的合作交流时间和空间,引导学生理解这种方法的道理,结合道理去记忆配方的具体步骤。
(3)公式法:根据配方法推导求根公式,以配方 法为基础,引导学生自己探索求根公式,不可直接抛出公式让学生模仿着用。强调“当”是根据非负而产生的。教学时总结出公式法解题的一般步骤:化为一般式;指出a、b、c,带符号;写出求根公式;代入求解。在公式法之后进行归纳,总结根的判别式对应的一元二次方程根的三种情况:
①有两个不等的实数根;
②有两个相等的实数根;
①②合称为由实数根,③没有实数根,但不能说没有根。
(4)因式分解法:新课标已把这部分的内容降要求了,所以,不要再提高复杂度,只要求学生能掌握:三类。当然,有余力的可稍作变式。另外,对于二次项系数为1的简单的十字相乘法一点补充。
第一课时,安排可直接提公因式类型
第二课时,安排需要整理后方可因式分解类型,及简单的十字相乘法。
(5)一元二次方程根的判别式:这是中山的补充教学的内容,在教学时主要让学生知道根的判别式的作用及进行简单的应用。
(6)一元二次方程根与系数关系:这是中山的补充教学的内容,在教学时主要让学生知道根的判别式的作用及进行简单的应用。
根据中山中考命题的特点,在进行完根的判别式与根与系数的关系的简单知识的教学之后再上一节习题课,目的是让学生懂得利用知识解决较为综合的问题。
注意点:
①以解决实际问题背景为线索安排解法学习,方法步骤多由学生归纳总结。
②配方法、公式法都应先判断是否为一般形式,小心符号错误或混淆
③因式分解法没注意方程没有写成A·B=0形式,要讲解原理
④形如:,学生会约分,造成丢根。
⑤对一个方程,应先鼓励学生分析方程特点,对解法发表自己的意见,体会数学思想方法的作用,逐步养成主动探究和应用的习惯。
22.3实际问题与一元二次方程
一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
四、课时安排:
本章教学约需14课时,具体分配如下:
§22.1一元二次方程 1课时
§22.2一元二次方程的解法5课时
一元二次方程的根的判别式1课时
一元二次方程的根与系数的关系2课时
§22.3一元二次方程的应用2课时
§小结2课时
单元测验1课时
元二次方程教案 篇2
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.
2.教学难点:根据数与数字关系找等量关系.
三、教学步骤
(一)明确目标
(二)整体感知:
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答.
(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).
2.例1 两个连续奇数的积是323,求这两个数.
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法) .设较小的奇数为x,则另一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1.
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.
解法(一)
设较小奇数为x,另一个为x+2,
据题意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解这个方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:这两个奇数是17,19或者-19,-17.
解法(二)
设较小的奇数为x-1,则较大的奇数为x+1.
据题意,得(x-1)(x+1)=323.
整理后,得x2=324.
解这个方程,得x1=18,x2=-18.
当x=18时,18-1=17,18+1=19.
当x=-18时,-18-1=-19,-18+1=-17.
答:两个奇数分别为17,19;或者-19,-17.
解法(三)
设较小的奇数为2x-1,则另一个奇数为2x+1.
据题意,得(2x-1)(2x+1)=323.
整理后,得4x2= 324.
解得,2x=18,或2x=-18.
当2x=18时,2x-1=18-1=17;2x+1=18+1=19.
当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17
答:两个奇数分别为17,19;-19,-17.
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种.
练习
1.两个连续整数的积是210,求这两个数.
2.三个连续奇数的和是321,求这三个数.
3.已知两个数的和是12,积为23,求这两个数.
学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.
分析:数与数字的关系是:
两位数=十位数字×10+个位数字.
三位数=百位数字×100+十位数字×10+个位数字.
解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.
据题意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
当x=4时,x-2=2,10(x-2)+x=24.
答:这个两位数是24.
练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35,53)
2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.
教师引导,启发,学生笔答,板书,评价,体会.
(四)总结,扩展
1奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.
数与数字的关系
两位数=(十位数字×10)+个位数字.
三位数=(百位数字×100)+(十位数字×10)+个位数字.
……
2.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.
四、布置作业
教材P.42中A1、2、
元二次方程数学教学教案 篇3
一、教材分析
1、教材的地位和作用
一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。
2、教学目标及确立目标的依据
九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。
知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。
德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。
3、重点,难点及确定重难点的依据
“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。
二、教材处理
在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。
三、教学方法和学法
教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。
四、教学手段
采用投影仪
五、教学程序
1、新课导入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)
(2)列方程解应用题的方法,步骤?(并引例打基础)
课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)
设出求知数,列出代数式,并根据等量关系列出方程
《一元二次方程》全章教案 篇4
教学目标:
知识与技能目标:
经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
过程与方法目标:
经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的主动性,提高数学的应用能力。
情感态度与价值观目标:
培养学生主动参与、合作交流的意识;经历独立克服困难和运用知识解决问题的成功体验,提高学生学习数学的信心。
教学重点:
理解一元二次方程的概念及其形式。
教学难点:
一元二次方程概念的探索
教学过程
一、情境引入
今天我们学习一元二次方程,温故而知新,我们都学过什么方程?(一元一次方程,分式方程,方程组)同桌两人说说学过这些方程的定义都是什么。你觉得学过这些方程难吗?只要你拿出你的学习热情来,就会感觉这节课的内容,也很简单。请你打开课本39页,从39页到40页议一议以上的内容,希望你准确而又迅速的在课本上列出方程,不用求解。列出方程后组内对一下答案,如有错误,出错的原因。
二、探索新知
列方程正确率百分之百的请举手。祝贺你们,没举手的同学加油!(列对的同学多就问,否则问现在会列这些方程的请举手)
请你将上述三个方程,化简成等号右边等于0的形式。完成后组内对一下答案,先完成的小组把你们的成果写在黑板上,其余组跟黑板上的答案对一下,有不同意见的把你们组的答案也写上去。(黑板上的答案对吗?如有没约分的,问哪个更好?)
观察、思考刚才这3个方程2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0,以及又加入的这两个方程x2+3x=0,4x2-5=0是一元一次方程吗?你猜这些方程叫什么方程?对,这样的方程就是我们今天学习的一元二次方程。
请大家先思考然后小组讨论导学案中探究一中的问题2到6,组长找好本题发言人,最后全班交流你们组对问题5和6的看法。
2、以上方程与一元一次方程有什么相同与不同之处?
3、你能说说什么样的方程是一元二次方程吗?
4、如果我们借助字母系数来表示,那么以上方程能都化成一个方程--------------------------,用字母表示系数时,要注意什么吗?
5、你们组归纳的一元二次方程的概念与课本40页的定义有区别吗?谁的更好?好在哪?
6、你认为一元二次方程的概念中重点要强调的是什么?为什么?
请3组同学交流一下你们讨论的问题5、6的结果。老师根据学生的回答,有针对性的提出为什么这样想?你的理由是什么?以强调a≠0。并板书(1)含一个未知数(2)2次(3)整式方程,一般形式ax2+bx+c=0(a、b、c、为常数a≠0)有没有要补充或者要发表不同看法的小组?
请你抢答问题7。
7、判断下列方程是不是一元二次方程,若不是请说明理由。
同桌两人能举出几个一元二次方程的例子吗?
探索二
先自学课本40最后一段话,然后同桌两人说出黑板上3个方程的二次项、二次项系数、一次项、一次项系数、常数项。
找一元二次方程各项及其各项系数时,需要注意什么吗?(先要是一般形式,系数带符号)请你完成探究二中问题1,请2组、4组选派一名同学分别上黑板(10、(2)两题。完成后对照课本41页例1自己检查对错,有困难的同学找组长和我。
1、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)
问题3做对了的同学请举手?祝贺你们。出错的同学能不能把你的宝贵经验告诉我们,我们下次也好注意一下,别再出错?请你说说,谢谢你对我们的提醒。
三、巩固练习
请看问题2,
2、已知关于x的方程(1)k为何值时,此方程为一元二次方程?(2)k为何值时,此方程为一元一次方程?谁能回答?为什么这样想?
四、课堂:
先小组内说出本节课你的收获,然后全班交流你们组的收获。大家看看哪个小组的收获多。
五、自我检测:
看看我们的收获是不是真的
硕果累累,请你完成自我检测给你5分钟时间,做完的给我和组长检查。老师和小组长当堂批改
1、三个连续整数两两相乘,所得积的和为242,这三个数分别是多少?
根据题意,列出方程为------------------------------------。
2、把下列方程化为一元二次方程的形式,并写出它的二次项系数、常数项:
方程
一般形式
二次项系数
常数项
3x2=5x-1
(x+2)(x-1)=6
3、关于x的方程(k-2)x2+2(k+9)x+2k-1=0
(1)k为何值时,是一元二次方程?k--------------是一元二次方程。
(2)k为何值时,是一元一次方程?k-------------是一元一次方程。
六、小组
请小组长本小组今天大家的表现。
七、作业
课本42页1(2),2(1)(2)(3)
能力挑战:
已知关于x的方程(k2-1)x2+(k+1)x-2=0
(1)k为何值时,此方程为一元二次方程?并写出该一元二次方程的二次项系数、一次项系数、常数项。
(2)k为何值时,此方程为一元一次方程?
板书设计:一元二次方程
(1)3x(x+2)=4(x-1)+7
(2)(2x+3)2=(x+1)(4x-1)
2x2-13x+11=0(1)含一个未知数(2)2次
x2-8x-20=0(3)整式方程
x2+12x-15=0一般形式ax2+bx+c=0(a、b、c、为常数a≠0)
元二次方程教案 篇5
教学内容
间接即通过变形运用开平方法降次解方程.
教学目标
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.
重难点关键
1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
2.难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
教学过程
一、复习引入
(学生活动)请同学们解下列方程
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=± 或mx+n=± (p≥0).
如:4x2+16x+16=(2x+4)2
二、探索新知
列出下面二个问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面三个方程的解法呢?
问题1:印度古算中有这样一资骸耙蝗汉镒臃至蕉樱吒咝诵嗽谟蜗罚?八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起”.
大意是说:一群猴子分成两队,一队猴子数是猴子总数的 的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?问题2:如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?老师点评:问题1:设总共有x只猴子,根据题意,得:x=( x)2+12
整理得:x2-64x+768=0
问题2:设道路的宽为x,则可列方程:(20-x)(32-2x)=500
整理,得:x2-36x+70=0
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2-64x+768=0 移项→ x=2-64x=-768
两边加( )2使左边配成x2+2bx+b2的形式 → x2-64x+322=-768+1024
元二次方程教案 篇6
教学设计思想
解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。直接开平方法很简单,在这里不做过多的介绍。为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。在解一元二次方程的几种方法中,均需要用到转化的思想方法。如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
教学目标
知识与技能:
1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
过程与方法:
1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
2.在探究一元二次方程的过程中体会转化、降次的数学思想。
情感态度价值观:
在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
教学重难点
重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
教学方法
探索发现,讲练结合
元二次方程教案 篇7
【教材分析】
一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。
【教学目标】
1、理解一元二次方程的概念,能熟练地把一元二次方程整理成一般形式(≠0)并知道各项及其系数。
2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的进一步认识。
【教学重点与难点】
理解一元二次方程的概念及一般形式,会正确识别一般式中的“项”及“系数”。
【教法、学法】
因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。本节课借助多媒体辅助教学,指导学生从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。
【教学过程】
一、复习旧知,类比新知
1、一元一次方程的概念
像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程
2、一般形式:
是常数且
设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念。
二、生活情境,自主学习
(1)正方形桌面的面积是2m,设正方形桌面的边长是x m,可得方程
(2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,设花圃的宽是x m则花圃的长是m,可得方程
(3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是x cm,可得方程
(4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离比梯子的顶端到地面的距离多1m,设梯子的底端到墙面的距离是x m,可得方程
设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的`,从而激发学生的求知欲望,顺利地进入新课。
三、探究学习:
1、概念得出
讨论交流:以上所列方程有哪些共同特征?
设计意图:英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的。
2、巩固概念
下列方程中那些是一元二次方程。
设计意图:
这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解。题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力。此环节采取抢答的形式,提高学生学习数学的兴趣和积极性。
3、一元二次方程的一般形式:
设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的。
4、典型例题
例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项
设计意图:此题设置的目的在于加深学生对一般形式的理解。
5、巩固练习
把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项
设计意图:此题设置的目的在于加深学生对一般形式的理解
6、拓展应用
(1)、若是关于x的一元二次方程,则()
p为任意实数B、p=0 C、p≠0 D、p=0或1
(2)、若关于x的方程mx-2x+1=2x(x-1)是一元二次方程,那么m的取值范围是
(3)、若方程是关于x的一元二次方程,则m的值为
设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。
7、课堂小结
设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,。为每个学生都创造了数学活动中获得活动经验的机会。
【课后作业】
1、下列方程中哪些是一元二次方程?试说明理由。
2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:
元二次方程教案 篇8
一、教学目标
1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。
2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。
3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。
二、教学重难点
重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。
难点:找对题目中的数量关系从而列出一元二次方程。
三、教学过程
(一)导入新课
师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?
生:老师,这是雷锋叔叔。
师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?
生:是的老师。
师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?
生:想。
师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。
(二)新课教学
师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。
(下去巡视)
(三)小结作业
师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。