首页 > 教学教案 > 教案大全 > 动量守恒定律教案(优秀6篇)正文

《动量守恒定律教案(优秀6篇)》

时间:

作为一名为他人授业解惑的教育工作者,可能需要进行教学设计编写工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。怎样写教学设计才更能起到其作用呢?

动量守恒定律物理教案 篇1

教学目标:

一、知识目标

1、理解动量守恒定律的确切含义.

2、知道动量守恒定律的适用条件和适用范围.

二、能力目标

1、运用动量定理和牛顿第三定律推导出动量守恒定律.

2、能运用动量守恒定律解释现象.

3、会应用动量守恒定律分析、计算有关问题(只限于一维运动).

三、情感目标

1、培养实事求是的科学态度和严谨的推理方法.

2、使学生知道自然科学规律发现的重大现实意义以及对社会发展的巨大推动作用.

重点难点:

重点:理解和基本掌握动量守恒定律.

难点:对动量守恒定律条件的掌握.

教学过程:

动量定理研究了一个物体受到力的冲量作用后,动量怎样变化,那么两个或两个以上的物体相互作用时,会出现怎样的总结果?这类问题在我们的日常生活中较为常见,例如,两个紧挨着站在冰面上的同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化,又如火车编组时车厢的对接,飞船在轨道上与另一航天器对接,这些过程中相互作用的物体的动量都有变化,但它们遵循着一条重要的规律.

(-)系统

为了便于对问题的讨论和分析,我们引入几个概念.

1.系统:存在相互作用的几个物体所组成的整体,称为系统,系统可按解决问题的需要灵活选取.

2.内力:系统内各个物体间的相互作用力称为内力.

3.外力:系统外其他物体作用在系统内任何一个物体上的力,称为外力.

内力和外力的区分依赖于系统的选取,只有在确定了系统后,才能确定内力和外力.

(二)相互作用的两个物体动量变化之间的关系

【演示】如图所示,气垫导轨上的A、B两滑块在P、Q两处,在A、B间压紧一被压缩的弹簧,中间用细线把A、B拴住,M和N为两个可移动的挡板,通过调节M、N的位置,使烧断细线后A、B两滑块同时撞到相应的挡板上,这样就可以用SA和SB分别表示A、B两滑块相互作用后的速度,测出两滑块的质量mA\mB和作用后的位移SA和SB比较mASA和mBSB.

高二物理《动量守恒定律》教案

1.实验条件:以A、B为系统,外力很小可忽略不计.

2.实验结论:两物体A、B在不受外力作用的条件下,相互作用过程中动量变化大小相等,方向相反,即△pA=-△pB或△pA+△pB=0

【注意】因为动量的变化是矢量,所以不能把实验结论理解为A、B两物体的动量变化相同.

(三)动量守恒定律

1.表述:一个系统不受外力或受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律.

2.数学表达式:p=p’,对由A、B两物体组成的系统有:mAvA+mBvB=mAvA’+mBvB’

(1)mA、mB分别是A、B两物体的质量,vA、vB、分别是它们相互作用前的速度,vA’、vB’分别是它们相互作用后的速度.

【注意】式中各速度都应相对同一参考系,一般以地面为参考系.

(2)动量守恒定律的表达式是矢量式,解题时选取正方向后用正、负来表示方向,将矢量运算变为代数运算.

3.成立条件

在满足下列条件之一时,系统的动量守恒

(1)不受外力或受外力之和为零,系统的总动量守恒.

(2)系统的内力远大于外力,可忽略外力,系统的总动量守恒.

(3)系统在某一方向上满足上述(1)或(2),则在该方向上系统的总动量守恒.

4.适用范围

动量守恒定律是自然界最重要最普遍的规律之一,大到星球的宏观系统,小到基本粒子的微观系统,无论系统内各物体之间相互作用是什么力,只要满足上述条件,动量守恒定律都是适用的.

(四)由动量定理和牛顿第三定律可导出动量守恒定律

设两个物体m1和m2发生相互作用,物体1对物体2的作用力是F12,物体2对物体1的作用力是F21,此外两个物体不受其他力作用,在作用时间△Vt内,分别对物体1和2用动量定理得:F21△Vt=△p1;F12△Vt=△p2,由牛顿第三定律得F21=-F12,所以△p1=-△p2,即:

△p=△p1+△p2=0或m1v1+m2v2=m1v1’+m2v2’.

【例1】如图所示,气球与绳梯的质量为M,气球的绳梯上站着一个质量为m的人,整个系统保持静止状态,不计空气阻力,则当人沿绳梯向上爬时,对于人和气球(包括绳梯)这一系统来说动量是否守恒?为什么?

高二物理《动量守恒定律》教案

【解析】对于这一系统来说,动量是守恒的,因为当人未沿绳梯向上爬时,系统保持静止状态,说明系统所受的重力(M+m)g跟浮力F平衡,那么系统所受的外力之和为零,当人向上爬时,气球同时会向下运动,人与梯间的相互作用力总是等值反向,系统所受的外力之和始终为零,因此系统的动量是守恒的.

【例2】如图所示是A、B两滑块在碰撞前后的闪光照片部分示意图,图中滑块A的质量为0.14kg,滑块B的质量为0.22kg,所用标尺的最小刻度是0.5cm,闪光照相时每秒拍摄10次,试根据图示回答:

高二物理《动量守恒定律》教案

(1)作用前后滑块A动量的增量为多少?方向如何?

(2)碰撞前后A和B的总动量是否守恒?

【解析】从图中A、B两位置的变化可知,作用前B是静止的,作用后B向右运动,A向左运动,它们都是匀速运动.mAvA+mBvB=mAvA’+mBvB’

(1)vA=SA/t=0.05/0.1=0.5(m/s);

vA′=SA′/t=-0.005/0.1=-0.05(m/s)

△pA=mAvA’-mAvA=0.14*(-0.05)-0.14*0.5=-0.077(kg·m/s),方向向左.

(2)碰撞前总动量p=pA=mAvA=0.14__0.5=0.07(kg·m/s)

碰撞后总动量p’=mAvA’+mBvB’

=0.14__(-0.06)+0.22__(0.035/0.1)=0.07(kg·m/s)

p=p’,碰撞前后A、B的总动量守恒.

【例3】一质量mA=0.2kg,沿光滑水平面以速度vA=5m/s运动的物体,撞上静止于该水平面上质量mB=0.5kg的物体B,在下列两种情况下,撞后两物体的速度分别为多大?

(1)撞后第1s末两物距0.6m.

(2)撞后第1s末两物相距3.4m.

【解析】以A、B两物为一个系统,相互作用中无其他外力,系统的动量守恒.

设撞后A、B两物的速度分别为vA’和vB’,以vA的方向为正方向,则有:

mAvA=mAvA’+mBvB’;

vB’t-vA’t=s

(1)当s=0.6m时,解得vA’=1m/s,vB’=1.6m/s,A、B同方向运动.

(2)当s=3.4m时,解得vA’=-1m/s,vB’=2.4m/s,A、B反方向运动.

【例4】如图所示,A、B、C三木块的质量分别为mA=0.5Kg,mB=0.3Kg,mC=0.2Kg,A和B紧靠着放在光滑的水平面上,C以v0=25m/s的水平初速度沿A的上表面滑行到B的上表面,由于摩擦最终与B木块的共同速度为8m/s,求C刚脱离A时,A的速度和C的速度.

高二物理《动量守恒定律》教案

【解析】C在A的上表面滑行时,A和B的速度相同,C在B的上表面滑行时,A和B脱离.A做匀速运动,对A、B、C三物组成的系统,总动量守恒.

动量动量守恒定律教案 篇2

碰撞中的动量守恒

1、实验目的、原理

(1)实验目的

运用平抛运动的知识分析、研究碰撞过程中相互作用的物体系动量守恒

(2)实验原理

(a)因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同,若用飞行时间作时间单位,小球的水平速度在数值上就等于小球飞出的水平距离。

(b)设入射球、被碰球的质量分别为m

1、m2,则入射球碰撞前动量为(被碰球静止)p1=m1v1①

设碰撞后m1,m2的速度分别为v’

1、v’2,则碰撞后系统总动量为

p2=mlV’1+m2v’2②

只要测出小球的质量及两球碰撞前后飞出的水平距离,代入①、②两式就可研究动量守恒。

2、买验器材

斜槽,两个大小相同而质量不等的小钢球,天平,刻度尺,重锤线,白纸,复写纸,三角板,圆规。

3、实验步骤及安装调试

(1)用天平测出两个小球的质量ml、m2.

(2)按图5—29所示安装、调节好实验装置,使斜槽末端切

线水平,将被碰小球放在斜槽末端前小支柱上,入射球放在斜

槽末端,调节支柱,使两小球相碰时处于同一水平高度,且在

碰撞瞬间入射球与被碰球的球心连线与斜槽末端的切线平

行,以确保正碰后两小球均作平抛运动。

(3)在水平地面上依次铺放白纸和复写纸。

(4)在白纸上记下重锤线所指的位置O,它表示入射球m1碰

撞前的位置,如图5—30所示。

(5)移去被碰球m2,让入射球从斜槽上同一高度滚下,重复10次左右,用圆规画尽可能小的圆将所有的小球落点圈在里面,其圆心即为人射球不发生碰撞情况下的落点的平均位置P,如图5—31所示。

(6)将被碰小球放在小支柱上,让入射球从同一高度滚下,使它们发生正碰,重复10次左右,同理求出入射小球落点的平均位置M和被碰小球落点的平均位置N.

(7)过O、N作一直线,取O0’=2r(r为小球的半径,可用刻度尺和三角板测量小球直径计算厂),则O’即为被碰小球碰撞前的球心的位置(即投影位置)。(8)用刻度尺测量线段OM、OP、ON的长度。则系统碰撞前的动量可表示为p1=m1·OP,系统碰撞后的总动量可表示为p2=m1·OM+m2·O'N

若在误差允许范围内p1与p2相等,则说明碰撞中动量守恒。(9)整理实验器材,放回原处。

4、注意事项

(1)斜槽末端切线必须水平。

说明:调整斜槽时可借助水准仪判定斜槽末端是否水平。

(2)仔细调节小立柱的高度,使两小球碰撞时球心在同一高度,且要求两球球心连线与斜槽末端的切线平行。

(3)使小支柱与槽口的距离等于2r(r为小球的半径)

(4)入射小球每次都必须从斜槽上同一位置由静止开始滚下。

说明:在具体操作时,斜槽上应安装挡球板。

(5)入射球的质量(m1)应大于被碰小球的质量(m2)。

(6)地面须水平,白纸铺放好后,在实验过程中不能移动白纸。

5、数据处理及误差分析

(1)应多次进行碰撞,两球的落地点均要通过取平均位置来确定,以减小偶然误差。

(2)在实验过程中,使斜槽末端切线水平和两球发生正碰,否则两小球在碰后难以作平抛运动。

(3)适当选择挡球板的位置,使入射小球的释放点稍高。

说明:入射球的释放点越高,两球相碰时作用力越大,动量守恒的误差越小,且被直接测量的数值OM、0IP、0N越大,因而测量的误差越小。

一。目的要求

1、用对心碰撞特例检验动量守恒定律;

2、了解动量守恒和动能守恒的条件;

3、熟练地使用气垫导轨及数字毫秒计。

二。原理

1、验证动量守恒定律

动量守恒定律指出:若一个物体系所受合外力为零,则物体的总动量保持不变;若物体系所受合外力在某个方向的分量为零,则此物体系的总动量在该方向的分量守恒。

设在平直导轨上,两个滑块作对心碰撞,若忽略空气阻力,则在水平方向上就满足动量守恒定律成立的条件,即碰撞前后的总动量保持不变。

m1u1m2u2m1v1m2v2(6.1) 其中,u

1、u2和v

1、v2分别为滑块m

1、m2在碰撞前后的速度。若分别测出式(6.1)中各量,且等式左右两边相等,则动量守恒定律得以验证。

2、碰撞后的动能损失

只要满足动量守恒定律成立的条件,不论弹性碰撞还是非弹性碰撞,总动量都将守恒。但对动能在碰撞过程中是否守恒,还将与碰撞的性质有关。碰撞的性质通常用恢复系数e表达:

ev2v1(6.2) u1u

2式(6.2)中,v2v1为两物体碰撞后相互分离的相对速度,u1u2则为碰撞前彼此接近的相对速度。

(1)若相互碰撞的物体为弹性材料,碰撞后物体的形变得以完全恢复,则物体系的总动能不变,碰撞后两物体的相对速度等于碰撞前两物体的相对速度,即v2v1u1u2,于是e1,这类碰撞称为完全弹性碰撞。

(2)若碰撞物体具有一定的塑性,碰撞后尚有部分形变残留,则物体系的总动能有所损耗,转变为其他形式的能量,碰撞后两物体的相对速度小于碰撞前的相对速度,即0v2v1u1u2于是,0e1,这类碰撞称为非弹性碰撞。

(3)碰撞后两物体的相对速度为零,即v2v10或v2v1v,两物体粘在一起以后以相同速度继续运动,此时e0,物体系的总动能损失最大,这类碰撞称为完全非弹性碰撞,它是非弹性碰撞的一种特殊情况。

三类碰撞过程中总动量均守恒,但总动能却有不同情况。由式(6.1)和(6.2)可求碰撞后的动能损失 Ek(1/2)m1m21e2u1u2/m1m2 。①对于完全弹性碰撞,因2

e1,故Ek0,即无动能损失,或曰动能守恒。②对于完全非弹性碰撞,因e0,故:EkEkM,即,动能损失最大。③对于非完全弹性碰撞,因0e1,故动能损失介于二者之间,即:0EkEkM。

3、 m1m2m,且u20的特定条件下,两滑块的对心碰撞。

(1)对完全弹性碰撞,e1,式(6.1)和(6.2)的解为

v10(6.3)v2u1

由式(6.3)可知,当两滑块质量相等,且第二滑块处于静止时,发生完全弹性碰撞的结果,使第一滑块静止下来,而第二滑块完全具有第一滑块碰撞前的速度,“接力式”地向前运动。即动能亦守恒。

以上讨论是理想化的模型。若两滑块质量不严格相等、两挡光物的有效遮光宽度s1及若式(6.3)得到验证,则说明完全弹性碰撞过程中动量守恒,且e1,Ek0,s2也不严格相等,则碰撞前后的动量百分差E1为:E1

动能百分差E2为:E2P2P1P1m2s2t1(6.4) m1s1t22m2s2t121(6.5) 22m1s1t2Ek2Ek1Ek

1若E1及E2在其实验误差范围之内,则说明上述结论成立。

(2)对于完全非弹性碰撞,式(6.1)和(6.2)的解为:

v1v2vu1(6.6)

2若式(6.6)得证,则说明完全非弹性碰撞动量守恒,且e0,其动能损失最大,约为50%。

s1。同样可求得其动考虑到完全非弹性碰撞时可采用同一挡光物遮光,即有:s2

及E2分别为: 量和动能百分差E1

m2t1P2P11E1mt1(6.7) P112

2Ek1m2t1'Ek(6.8)E21'1Ekm1t2

显然,其动能损失的百分误差则为:

m2t1E21mt1(6.9)

12

及E在其实验误差范围内,则说明上述结论成立。 若E1

三。仪器用品

气垫导轨及附件(包括滑块及挡光框各一对),数字毫秒计、物理天平及游标卡尺等。

四。实验内容

1、用动态法调平导轨,使滑块在选定的运动方向上做匀速运动,以保证碰撞时合外力为零的条件(参阅附录2);

2、用物理天平校验两滑块(连同挡光物)的质量m1及m2;

2;3.用游标卡尺测出两挡光物的有效遮光宽度s

1、s2及s

14、在m1m2m的条件下,测完全弹性和完全非弹性碰撞前后两滑块各自通过光电

、t2。 门一及二的时间t

1、t2及t1

五。注意事项

1、严格按照气垫导轨操作规则(见附录2),维护气垫导轨;

2、实验中应保证u20的条件,为此,在第一滑块未到达之前,先用手轻扶滑块(2),待滑块(1)即将与(2)碰撞之前再放手,且放手时不应给滑块以初始速度;

3、给滑块(1)速度时要平稳,不应使滑块产生摆动;挡光框平面应与滑块运动方向一致,且其遮光边缘应与滑块运动方向垂直;

4、严格遵守物理天平的操作规则;

5、挡光框与滑块之间应固定牢固,防止碰撞时相对位置改变,影响测量精度。

六。考查题

1、动量守恒定律成立的条件是什么?实验操作中应如何保证之?

2、完全非弹性碰撞中,要求碰撞前后选用同一挡光框遮光有什么好处?实验操作中如何实现?

3、既然导轨已调平,为什么实验操作中还要用手扶住滑块(2)?手扶滑块时应注意什么?

4、滑块(2)距光电门(2)近些好还是远些好?两光电门间近些好还是远些好?为什么?

动量守恒定律教案 篇3

我说课的过程包括说教材和学生,说教学目标,说教学的过程、方法及其原理,即教学的组织过程,最后再说板书设计和本节课的教学设计特色。

一、首先说教材和学生。

动量定理是物理学中力学部分的重要规律之一,是联系力与运动的重要桥梁,是解释物理现象和解决物理问题的重要物理规律之一。

学生已经学习了牛顿运动定律和运动学的基本规律,已经具备了进一步学习动量定理的知识基础。同时高中的学生思维活跃,关心生活,往往对物理规律和现实生活的联系比较感兴趣。我在这节课的设计过程中充分考虑了学生的这些心理特点,根据新课程标准对知识与技能、过程与方法,情感态度与价值观三个方面的要求,制定了以下教学目标:

1.知识与技能

能够说出动量定理的内容。

能够运用动量定理解释生活中的物理现象,并能够进行相关的计算。

2.过程与方法

让学生在多媒体创设的情境中,通过小组讨论等方式学习和应用新知识,培养学生的参与和合作意识,进一步学会交流与合作。

3.情感态度与价值观

使学生认识到物理知识与生活是息息相关的,体会到学习物理的乐趣。

培养学生热爱科学、乐于实践、善于交流合作的科学态度。

重点:

能够运用动量定理解释科学中和生活中的'一些相关现象。

难点:学生解决问题时在应用带有方向的物理量方面容易出错,因此我把本节课的难点确定为:应用动量定理求解时能够正确地把握相关物理量的矢量性。

复习:

加速度:a=(v2-v1)/t

冲量:

动量:

牛顿第二定律:

表达式:

二、说教学的过程、方法及其原理。

这节课我主要是根据建构主义学习理论进行设计的,在整个过程中主要采用了实验法、讨论法和多媒体辅助教学法等多种教学方法。当今建构主义对于学习做出了新的解释,认为学习是学习者主动地建构内部心理表征的过程,并 因此建构主义学习理论认为“情境”、“协作”、“会话”和“意义建构”是学习环境中的四大要素。

第一步,我首先带领学生对加速度的定义、冲量、动量和牛顿第二定律进行简单的复习,激活学生认知结构中的原有知识,为新知识的学习提供了一个良好的生长点。

(幻灯显示)

思考:

鸡蛋落在木板上为什么会碎呢?它受到的作用力比落在海绵上的在吗?

第二步,我让学生思考下面的问题:鸡蛋从一米高的地方自由下落,掉到木板上,鸡蛋会破吗?如果掉到海绵垫子上还会破吗?为什么呢?接着用两个质量相同的鸡蛋来做这个演示实验,让学生仔细观察分析,然后用多媒体进行简单的模拟。做实验用的是煮熟的鸡蛋,这样既能够保证实验的效果,又不会造成浪费。

(幻灯显示)

在这个过程中我主要采用实验法来创设一个真实的情境,对实验的观察和对问题的思考能让学生把注意力迅速转移到物理学习中来,对本节课的学习产生兴趣。

然后出示两张图片,第一张请同学们思考跳高时为什么要用到海绵垫子?第二张请同学们思考如果飞来的是一块石块,他敢去顶吗?为什么?学生的积极性会很快被调动起来,给出各种各样的答案,进一步参与到学习中来。在这个时候我告诉学生,通过今天的学习,我们就能够明白其中的科学道理。

动量守恒定律教案 篇4

一、教材分析

1.教材的地位和作用:

这一章讲述动量的概念,并结合牛顿定律推导出《动量定理》和《动量守恒定律》。《动量定理》体现了力在时间上的累积效果。为解决力学问题开辟了新的途径,尤其是打击和碰撞的问题。这一章可视为牛顿力学的进一步展开,为力学的重点章。

《动量定理》为本章第二节,是第一节《动量和冲量》的延续,同时又为第三节《动量守恒定律》奠定了基础,在本章起有承前启后的作用。同时《动量定理》的知识与人们的日常生活、生产技术和科学研究有着密切的关系,因此学习这部分知识有着广泛的现实意义。

2.本节教学重点:

(1)动量定理的推导和对动量定理的理解;

(2)利用动量定理解释有关现象和一维情况下的定量分析。

3.教学难点:

动量定理的矢量性,在实际问题中的正确应用

4.教学目标:

●知识与技能

(1)能从牛顿运动定律和运动学公式推导出动量定理的表达式。

(2)理解动量定理的确切含义,知道动量定理适用于变力。

(3)会用动量定理解释有关现象和处理有关的问题。

●过程与方法

(1)通过动量定理规律的学习过程,了解物理学的研究方法,认识物理实验、物理模型和传感器在物理学发展过程中的作用。

(2)通过学习用动量定理处理实际问题的过程,提高质疑、信息搜集和处理能力,分析、解决问题的能力和交流、合作的能力

●情感态度与价值观

(1)有将物理知识应用于生活和生产实践的意识,勇于探索与日常生活有关的`物理问题。

(2)了解并体会物理学对社会发展的贡献,关注并思考与物理学相关的热点问题,有可持续发展的意识,能在力所能及的范围内,为社会的可持续发展做出贡献。

(3)关心国内、国外科技发展现状与趋势,有振兴中华的使命感与责任感,有将科学服务于人类的意识。

二、学生情况分析

高一学生思维方式要求逐步由形象思维向抽象思维过渡,因此在教学中需以一些感性认识作为依托,加强直观性和形象性,以便学生理解。

补充录像资料以及瓦碎蛋全的演示实验、模拟建筑工人安全带的演示实验

录像:排球击球动作要快、铸铁打磨时速度要快;篮球接球手臂后缩、跳高运动员落地垫厚垫子、体操运动员落地都要屈膝,

图片:“勇气号”探测器成功登陆火星过程的一组图片,易碎品运输过程。

三、教学方法

应用实验导入法、启发学生通过自己的思考和讨论来探究动量定理。

四、教学程序

本节课分为四个环节,演示实验创设问题情景;建立模型共同探究;定性和定量应用动量定理。

第一环节:创设情景

为了保证建筑工人高空作业时人身安全,我们选用什么样的安全带比较好。结实的钢绳还是结实的弹性绳?

演示实验:模拟建筑工人从高空坠落分别系弹性绳和无弹性绳的对比演示实验(要挑选软度合适的橡皮泥做实验)

(两次物体都从同一高度自由下落,两次绳长相同)

实验现象:用弹性绳的那次橡皮泥完好无损,另一次橡皮泥被铁丝切成两半,断面非常整齐,

学生尝试解释现象。

第二环节:建立模型推导动量定理

此时,学生有了对力、时间、动量、冲量的初步感性认识,需要在老师的帮助下提高到理性认识。

引导学生建立模型,物体的运动分两个阶段,第一阶段物体自由下落同样的高度,获得同样的动量,第二阶段,经过一定的时间动量减为零

讨论第二阶段过程中,力的冲量和物体动量变化之间的关系

结论:动量变化相同时,时间长,力小

推广,生活中还有很多这样的例子:杯子落到水泥地上碎,落到地毯上就不碎;从高处落地都要屈膝;跳远前要松沙坑。

这些说明动量和冲量之间一定是有联系的,你能找出它们之间的关系么?

设一个物体以速度v1在光滑水平地面上运动,在同方向水平恒力F作用下,经过时间t,速度变为v2,由牛顿第二定律可得:Ft=mv2-mv1。

变力作用下动量定理还成立吗?

利用传感力和速度传感器当场测数据,

让小车在光滑水平轨道上向固定的力传感器运动,测出小车撞击传感过程中小车受到外力-时间图像,速度传感器测出次过程中的速度-时间图像。

分析数据发现:碰撞过程中外力的总冲量与碰撞前后动量的变化几乎一样。

所以,变力作用下,动量定理也成立。

动量守恒定律教案 篇5

动量守恒定律

三维教学目标

1、知识与技能:掌握运用动量守恒定律的一般步骤。

2、过程与方法:知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。

3、情感、态度与价值观:学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。

教学重点:运用动量守恒定律的一般步骤。

教学难点:动量守恒定律的应用。

教学方法:教师启发、引导,学生讨论、交流。

教学用具:投影片、多媒体辅助教学设备。

(一)引入新课

动量守恒定律的内容是什么?分析动量守恒定律成立条件有哪些?(①F合=0(严格条件)②F内远大于F外(近似条件,③某方向上合力为0,在这个方向上成立。)

(二)进行新课

1、动量守恒定律与牛顿运动定律

用牛顿定律自己推导出动量守恒定律的表达式。

(1)推导过程:

根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是:

根据牛顿第三定律,F1、F2等大反响,即F1=-F2所以:

碰撞时两球间的作用时间极短,用表示,则有:

代入并整理得

这就是动量守恒定律的表达式。

(2)动量守恒定律的重要意义

从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。

2、应用动量守恒定律解决问题的基本思路和一般方法

(1)分析题意,明确研究对象

在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体� 对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。

(2)要对各阶段所选系统内的。物体进行受力分析

弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力。在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。

(3)明确所研究的相互作用过程,确定过程的始、末状态

即系统内各个物体的初动量和末动量的量值或表达式。

注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。

(4)确定好正方向建立动量守恒方程求解。

3、动量守恒定律的应用举例

例2:如图所示,在光滑水平面上有A、B两辆小车,水平面的左侧有一竖直墙,在小车B上坐着一个小孩,小孩与B车的总质量是A车质量的10倍。两车开始都处于静止状态,小孩把A车以相对于地面的速度v推出,A车与墙壁碰后仍以原速率返回,小孩接到A车后,又把它以相对于地面的速度v推出。每次推出,A车相对于地面的速度都是v,方向向左。则小孩把A车推出几次后,A车返回时小孩不能再接到A车?

分析:此题过程比较复杂,情景难以接受,所以在讲解之前,教师应多带领学生分析物理过程,创设情景,降低理解难度。

解:取水平向右为正方向,小孩第一次

推出A车时:mBv1-mAv=0

即:v1=

第n次推出A车时:mAv+mBvn-1=-mAv+mBvn

则:vn-vn-1=,

所以:vn=v1+(n-1)

当vn≥v时,再也接不到小车,由以上各式得n≥5.5取n=6

点评:关于n的取值也是应引导学生仔细分析的问题,告诫学生不能盲目地对结果进行“四舍五入”,一定要注意结论的物理意义。

课后补充练习

(1)(2002年全国春季高考试题)在高速公路上发生一起交通事故,一辆质量为15000kg向南行驶的长途客车迎面撞上了一辆质量为3000kg向北行驶的卡车,碰后两车接在一起,并向南滑行了一段距离后停止。根据测速仪的测定,长途客车碰前以20m/s的速度行驶,由此可判断卡车碰前的行驶速率为()

A.小于10m/sB.大于10m/s小于20m/s

C.大于20m/s小于30m/sD.大于30m/s小于40m/s

(2)如图所示,A、B两物体的质量比mA∶mB=3∶2,它们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑。当弹簧突然释放后,则有()

A.A、B系统动量守恒B.A、B、C系统动量守恒

C.小车向左运动D.小车向右运动

(3)把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是

A.枪和弹组成的系统,动量守恒

B.枪和车组成的系统,动量守恒

C.三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系统动量近似守恒

D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零

(4)甲乙两船自身质量为120kg,都静止在静水中,当一个质量为30kg的小孩以相对于地面6m/s的水平速度从甲船跳上乙船时,不计阻力,甲、乙两船速度大小之比:v甲∶v乙=_______.

(5)(2001年高考试题)质量为M的小船以速度v0行驶,船上有两个质量皆为m的小孩a和b,分别静止站在船头和船尾。现在小孩a沿水平方向以速率v(相对于静止水面)向前跃入水中,然后小孩b沿水平方向以同一速率v(相对于静止水面)向后跃入水中。求小孩b跃出后小船的速度。

(6)如图所示,甲车的质量是2kg,静止在光滑水平面上,上表面光滑,右端放一个质量为1kg的小物体。乙车质量为4kg,以5m/s的速度向左运动,与甲车碰撞以后甲车获得8m/s的速度,物体滑到乙车上。若乙车足够长,上表面与物体的动摩擦因数为0.2,则物体在乙车上表面滑行多长时间相对乙车静止?(g取10m/s2)

4、反冲运动与火箭

演示实验1:老师当众吹一个气球,然后,让气球开口向自己放手,看到气球直向学生飞去,人为制造一点“惊险气氛”,活跃课堂氛围。

演示实验2:用薄铝箔卷成一个细管,一端封闭,另一端留一个很细的口,内装由火柴头上刮下的药粉,把细管放在支架上,用火柴或其他办法给细管加热,当管内药粉点燃时,生成的燃气从细口迅速喷出,细管便向相反的方向飞去。

演示实验3:把弯管装在可以旋转的盛水容器的下部,当水从弯管流出时,容器就旋转起来。

提问:实验1、2中,气球、细管为什么会向后退呢?实验3中,细管为什么会旋转起来呢?

看起来很小的几个实验,其中包含了很多现代科技的基本原理:如火箭的发射,人造卫星的上天,大炮发射等。应该如何去解释这些现象呢?这节课我们就学习有关此类的问题。

(1)反冲运动

A、分析:细管为什么会向后退?(当气体从管内喷出时,它具有动量,由动量守恒定律可知,细管会向相反方向运动。)

B、分析:反击式水轮机的工作原理:当水从弯管的喷嘴喷出时,弯管因反冲而旋转,这是利用反冲来造福人类,象这样的情况还很多。

为了使学生对反冲运动有更深刻的印象,此时再做一个发射礼花炮的实验。分析,礼花为什么会上天?

(2)火箭

对照书上“三级火箭”图,介绍火箭的基本构造和工作原理。

播放课前准备的有关卫星发射、“和平号”空间站、“探路者”号火星探测器以及我国“神舟号”飞船等电视录像,使学生不仅了解航天技术的发展和宇宙航行的知识,而且要学生知道,我国的航天技术已经跨入了世界先进行列,激发学生的爱国热情。阅读课后阅读材料——《航天技术的发展和宇宙航行》。

动量动量守恒定律教案 篇6

一、教学目标

1、知道动量守恒定律的内容,掌握动量守恒定律成立的条件,并在具体问题中判断动量是否守恒。

2、学会沿同一直线相互作用的两个物体的动量守恒定律的推导。 3.知道动量守恒定律是自然界普遍适用的基本规律之一。

二、重点、难点分析

1、重点是动量守恒定律及其守恒条件的判定。 2.难点是动量守恒定律的矢量性。

三、教具

1、气垫导轨、光门和光电计时器,已称量好质量的两个滑块(附有弹簧圈和尼龙拉扣)。

2、计算机(程序已输入)。

四、教学过程

(一)引入新课

前面已经学习了动量定理,下面再来研究两个发生相互作用的物体所组成的物体系统,在不受外力的情况下,二者发生相互作用前后各自的动量发生什么变化,整个物体系统的动量又将如何?

(二)教学过程设计

1、以两球发生碰撞为例讨论“引入”中提出的问题,进行理论推导。 画图:

设想水平桌面上有两个匀速运动的球,它们的质量分别是m1和m2,速度分别是v1和v2,而且v1>v2。则它们的总动量(动量的矢量和)p=p1+p2=m1v1+m2v2。经过一定时间m1追上m2,并与之发生碰撞,设碰后二者的速度分别为v1'和v2',此时它们的动量的矢量和,即总动量p'=p1'+p2'=m1v1'+m2v2'。

板书:p=p1+p2=m1v1+m2v2 p'=p1'+p2'=m1v1'+m2v2'

下面从动量定理和牛顿第三定律出发讨论p和p'有什么关系。 设碰撞过程中两球相互作用力分别是F1和F2,力的作用时间是t。根据动量定理,m1球受到的冲量是F1t=m1v1'-m1v1;m2球受到的冲量是

F2t=m2v2'-m2v2。

根据牛顿第三定律,F1和F2大小相等,方向相反,即F1t=(m2v2'-m2v2) 整理后可得

板书:m1v1'+m2v2'=m1v1+m2v2 或写成

p1'+p2'=p1+p2

就是p'=p 这表明两球碰撞前后系统的总动量是相等的。 分析得到上述结论的条件:

两球碰撞时除了它们相互间的作用力(这是系统的内力)外,还受到各自的重力和支持力的作用,但它们彼此平衡。桌面与两球间的滚动摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 2.结论:相互作用的物体所组成的系统,如果不受外力作用,或它们所受外力之和为零。则系统的总动量保持不变。这个结论叫做动量守恒定律。

做此结论时引导学生阅读课文。并板书。

∑F外=0时

p'=p 3.利用气垫导轨上两滑块相撞过程演示动量守恒的规律。 (1)两滑块弹性对撞(将弹簧圈卡在一个滑块上对撞)

光电门测定滑块m1和m2第一次(碰撞前)通过A、B光门的时间t1和t2以及第二次(碰撞后)通过光门的时间t1'和t2'。光电计时器记录下这四

个时间。

将t

1、t2和t1'、t2'输入计算机,由编好的程序计算出v

1、v2和v1'、v2'。将已测出的滑块质量m1和m2输入计算机,进一步计算出碰撞前后的动量p

1、p2和p1'、p2'以及前后的总动量p和p'。

由此演示出动量守恒。

注意:在此演示过程中必须向学生说明动量和动量守恒的矢量性问题。因为v1和v2以及v1'和v2'方向均相反,所以p1+p2实际上是|p1|-|p2|=0,同理p1'+p2'实际上是|p1'|-|p2'|。

(2)两滑块完全非弹性碰撞(将弹簧圈取下,两滑块相对面各安装尼龙子母扣)

为简单明了起见,可让滑块m2静止在两光电门之间不动(p2=0),滑块m1通过光门A后与滑块m2相撞,二者粘合在一起后通过光门B。

光门A测出碰前m1通过A时的时间t,光门B测出碰后m1+m2通过B时的时间t'。将t和t'输出计算机,计算出p1和p1'+p2'以及碰前的总动量p(=p1)和碰后的总动量p'。由此验证在完全非弹性碰撞中动量守恒。

(3)两滑块反弹(将尼龙拉扣换下,两滑块间挤压一弹簧片) 将两滑块置于两光电门中间,二者间挤压一弯成∩形的弹簧片(铜片)。同时松开两手,钢簧片将两滑块弹开分别通过光电门A和B,测定出时间t1和t2。

将t1和t2输入计算机,计算出v1和v2以及p1和p2。

引导学生认识到弹开前系统的总动量p0=0,弹开后系统的总动量pt=|p1|-|p2|=0。总动量守恒,其数值为零。

4、例题

甲、乙两物体沿同一直线相向运动,甲的速度是3m/s,乙物体的速度是1m/s。碰撞后甲、乙两物体都沿各自原方向的反方向运动,速度的大小都是2m/s。求甲、乙两物体的质量之比是多少?

引导学生分析:对甲、乙两物体组成的系统来说,由于其不受外力,所以系统的动量守恒,即碰撞前后的总动量大小、方向均一样。

由于动量是矢量,具有方向性,在讨论动量守恒时必须注意到其方向性。为此首先规定一个正方向,然后在此基础上进行研究。

板书解题过程,并边讲边写。 板书:

讲解:规定甲物体初速度� 则v1=+3m/s,v2=1m/s。碰后v1'=-2m/s,v2'=2m/s 根据动量守恒定律应有m1v1+m2v2=m1v1'+m2v2'移项整理后可得m1比m2为

代入数值后可得m1/m2=3/5,即甲、乙两物体的质量比为3∶5。 5.练习题

质量为30kg的小孩以8m/s的水平速度跳上一辆静止在水平轨道上的平板车,已知平板车的质量是80kg,求小孩跳上车后他们共同的速度。

分析:对于小孩和平板车系统,由于车轮和轨道间的滚动摩擦很小,可以不予考虑,所以可

板书解题过程:

跳上车前系统的总动量

p=mv 跳上车后系统的总动量

p'=(m+M)V 由动量守恒定律有mv=(m+M)V 解得

6、小结

(1)动量守恒的条件:系统不受外力或合外力为零时系统的动量守恒。

(2)动量守恒定律适用的范围:适用于两个或两个以上物体组成的系统。动量守恒定律是自然界普遍适用的基本规律,对高速或低速运动的物体系统,对宏观或微观系统它都是适用的。