首页 > 教学教案 > 教学反思 > 初一数学教学反思最新9篇正文

《初一数学教学反思最新9篇》

时间:

作为一名优秀的人民教师,课堂教学是重要的工作之一,通过教学反思可以有效提升自己的教学能力,那么问题来了,教学反思应该怎么写?下面是小编精心为大家整理的初一数学教学反思最新9篇,如果能帮助到您,小编的一切努力都是值得的。

初一数学教学反思 篇1

结合初中数学大纲,就初中数学教材进行数学思想方法的教学研究,要通过对教材完整的分析和研究,理清和把握教材的体系和脉络,统揽教材全局,高屋建瓴《·》。然后,建立各类概念、知识点或知识单元之间的界面关系,归纳和揭示其特殊性质和内在的一般规律。例如,在“因式分解”这一章中,我们接触到许多数学方法—提公因式法、运用公式法、分组分解法、十字相乘法等。这是学习这一章知识的重点,只要我们学会了这些方法,按知识──方法──思想的顺序提炼数学思想方法,就能运用它们去解决成千上万分解多项式因式的问题。又如:结合初中代数的消元、降次、配方、换元方法,以及分类、变换、归纳、抽象和数形结合等方法性思想,进一步确定数学知识与其思想方法之间的结合点,建立一整套丰富的教学范例或模型,最终形成一个活动的知识与思想互联网络。

以数学知识为载体,将数学思想方法有机地渗透入教学计划和教案内容之中 教学计划的制订应体现数学思想方法教学的综合考虑,要明确每一阶段的载体内容、教学目标、展开步骤、教学程序和操作要点。数学教案则要就每一节课的概念、命题、公式、法则以至单元结构等教学过程进行渗透思想方法的具体设计。要求通过目标设计、创设情境、程序演化、归纳总结等关键环节,在知识的发生和运用过程中贯彻数学思想方法,形成数学知识、方法和思想的一体化。应充分利用数学的现实原型作为反映数学思想方法的基础。数学思想方法是对数学问题解决或构建所做的整体性考虑,它来源于现实原型又高于现实原型,往往借助现实原型使数学思想方法得以生动地表现,有利于对其深人理解和把握。例如:分类讨论的思想方法始终贯穿于整个数学教学中。在教学中要引导学生对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准统一、分层不越级),然后逐类讨论(即对各类问题详细讨论、逐步解决),最后归纳总结。教师要帮助学生掌握好分类的方法原则,形成分类思想。数学思想方法的渗透应根据教学计划有步骤地进行。一般在知识的概念形成阶段导入概念型数学思想,如方程思想、相似思想、已知与未知互相转化的思想、特殊与一般互相转化的思想等等。在知识的结论、公式、法则等规律的推导阶段,要强调和灌输思维方法,如解方程的如何消元降次、函数的数与形的转化、判定两个三角形相似有哪些常用思路等。在知识的总结阶段或新旧知识结合部分,要选配结构型的数学思想,如函数与方程思想体现了函数、方程、不等式间的相互转化,分数讨论思想体现了局部与整体的相互转化。在所有数学建构及问题的处理方面,注意体现其根本思想,如运用同解原理解一元一次方程,应注意为简便而采取的移项法则。

重视课堂教学实践,在知识的引进、消化和应用过程中促使学生领悟和提炼数学思想方法 数学知识发生的过程也是其思想方法产生的过程。在此过程中,要向学生提供丰富的、典型的以及正确的直观背景材料,创设使认知主体与客体之间激发作用的环境和条件,通过对知识发生过程的展示,使学生的思维和经验全部投人到接受问题、分析问题和感悟思想方法的挑战之中,从而主动构建科学的认知结构,将数学思想方法与数学知识融汇成一体,最终形成独立探索分析、解决问题的能力。概念既是思维的基础,又是思维的结果。恰当地展示其形成的过程,拉长被压缩了的“知识链”,是对数学抽象与数学模型方法进行点悟的极好素材和契机。在概念的引进过程中,应注意:

①解释概念产生的背景,让学生了解定义的合理性和必要性;

②揭示概念的形成过程,让学生综合概念定义的本质属性;

③巩固和加深概念理解,让学生在变式和比较中活化思维。在规律(定理、公式、法则等)的揭示过程中,教师应注意灌输数学思想方法,培养学生的探索性思维能力,并引导学生通过感性的直观背景材料或已有的知识发现规律,不过早地给结论,讲清抽象、概括或证明的过程,充分地向学生展现自己是如何思考的,使学生领悟蕴含其中的思想方法。

通过范例和解题教学,综合运用数学思想方法一方面要通过解题和反思活动,从具体数学问题和范例中总结归纳解题方法,并提炼和抽象成数学思想;另一方面在解题过程中,充分发挥数学思想方法对发现解题途径的定向、联想和转化功能,举一反三,触类旁通,以数学思想观点为指导,灵活运用数学知识和方法分析问题、解决问题。范例教学通过选择具有典型性、启发性、创造性和审美性的例题和练习进行。要注意设计具有探索性的范例和能从中抽象一般和特殊规律的范例,在对其分析和思考的过程中展示数学思想和具有代表性的数学方法,提高学生的思维能力。例如,对某些问题,要引导学生尽可能运用多种方法,从各条途径寻求答案,找出最优方法,培养学生的变通性;对某些问题可以进行由简到繁、由特殊到一般的推论,让学生大胆联系和猜想,培养其思维的广阔性;对某些问题可以分析其特殊性,克服惯性思维束缚,培养学生思维的灵活性;对一些条件、因素较多的问题,要引导学生全面分析、系统综合各个条件,得出正确结论,培养其横向思维等等。此外,还要引导学生通过解题以后的反思,优化解题过程,总结解题经验,提炼数学思想方法。

初一数学教学反思 篇2

初一是我校学究将用新模式的试点年级,所以我对教学过程中存在的问题还缺乏意识或者有时候抓不住重点和难点,缺乏对教学诊断、调整、纠错的能力。在实际教学过程中,我逐渐提高对教学过程中问题的敏感度,养成对教学的自觉反思,阶段经验总结,遵循“先学后教”的教学原则,不断提升自己的教育教学能力。

作为一名年轻的数学教师,其首要任务是树立正确的数学观,积极地自觉地促进自己的观念改变,以实现由静态的、片面的数学观向动态的、辩正的数学观的转变,特别是实现对上述问题的不自觉的认识向自觉认识的转化。

对于初一数学教育教学工作,我对以下几个方面进行了反思:

一、反思教学目标

教学目标是教学设计中的首要环节,是一节课的纲领,对纲领认识不清或制定错误必定注定打败仗。对于我们新分教师来说我自认为有以下几点不足:

一是对教学目标设计思想上不足够重视,目标设计流于形式。

二是教学目标设计关注的仍然只是认知目标,对“情感目标”、“能力目标”有所忽视,重视的是知识的灌输、技巧的传递,严重忽视了教材的育人功能。

三是教学目标的设计含混,不够全面、开放。

教学目标的制定要符合学生的认知程序与认知水平。制定的教学目标过高或过低都不利于学生发展,要让学生跳一跳摘到桃子。“这么简单的题都做不出来”、“这道题都讲过几遍了还不会做”,碰到这样情况,教师不应埋怨学生,而要深刻反思出现这样状况到底是什么原因,是学生不接受这样的讲解方式,还是认识上有差异;是学生不感兴趣,还是教师引导不到位;是教师制定的难点与学生的认知水平上的难点出现了不相符合;是教师期盼过高,还是学生接受新知识需要一个过程……教师在教学目标设计时要全面了解学生的现有认知水平,在学生现有认知水平的基础上,利用多媒体等多种有效手段调动学生的积极性,激发学习兴趣,让学生在教师的帮助下通过自己的努力向高一级的认知水平发展,让学生体会到成功的喜悦,形成良性发展。教师千万不能埋怨责怪学生,不反思自己,只会适得其反,以致把简单的问题都变成学生的难点,因此教学设计要能激发学生学习数学的热情与兴趣,要教给学生生活中的数学。

二、反思教学设计

在教学设计中,对教学内容的处理安排还存在以下几点不足:

(1)缺乏对教材内容转译;

(2)缺乏对已学知识的分析、综合、对比、归纳和整体系统化;

(3)缺乏对教学内容的教育功能的挖掘和利用;

(4)缺乏对自我上课的经验总结。

三、反思听课感悟

听课决不是简单地评价别人的优劣,不是关注讲课者将要讲什么,而是思考自己如何处理好同样的内容,然后将讲课者处理问题的方式与自己的预想处理方式相对照,以发现其中的出入。

四、征求学生意见

潜心于提高自己教学水平的教师,往往向学生征询对自己教学的反馈意见,这是教师对其教学进行反思的一个重要的渠道。

若在课堂上设计了良好的教学情境,则整节课学生的学习积极性始终很高。一是要抓住知识本质特征,设计一些诱发性的练习能诱导学生积极思维,刺激学生的好奇心。

二是要注意问题的设计不应停留在简单的变式和肤浅的问答形式上,而应设计一些既能让学生动手触摸、又能动脑思考的问题,这样可使学生在"观察、实践、归纳、猜想和证明"的探究过程中,激发起他们对新知识的渴望。

学生在学习中遇到的困惑,往往是一节课的难点,将解决学生困惑的方法在教学后记中记录下来,就会不断丰富自己的教学经验。

五、记录学生的独特见解

学生是学习的主体,是教材内容的实践者,通过他们自己切身的感觉,常常会产生一些意想不到的好的见解。有时学生的解法独具一格,对此,教师应将这些见解及时地记录下来。

以上是本人上完初一课程之后的几点感悟,我一定会紧跟新时期课程改革的步伐,抓住学校学究将用模式广泛推进的契机,努力实践、勇于创新,切实提高自己的教育教学水平。

七年级数学教学反思 篇3

《生活中的轴对称》是华师大版七年级下册第十章《轴对称》中的第一节内容,它与现实生活联系紧密,轴对称的知识在小学已有初步的渗透,在初中阶段,它不但与图形的三种运动方式(平移、翻折、旋转)中的翻折有着不可分割的联系,又是今后研究等腰三角形的轴对称性及其相关性质的重要依据和基础。

本节课知识看似简单,却也是今后学习相关知识的重要基础,为了有效地完成本节任务,在教学过程中我通过“猜字游戏”引入新课,有效的激发了学生学习的积极性。又运用多媒体展现生活中轴对称的图片,引起学生兴趣,激发学生求知欲。

学生的“数学活动”是本节课的教学主线,“等腰三角形”、“不规则五边形”教具的演示以及“剪纸”环节的设计为学生提供充分从事数学活动的机会及表达个人感受和想法的机会,使学生充分的感知后,自然形成本节课的概念。并有效的将轴对称图形与轴对称两个知识点进行区别于联系。教师仅作为知识的组织和引导者,引导学生积极地探索发现、讨论交流及概括总结,使课堂教学真正成为学生亲自参与的丰富生动的数学活动。习题的设计目的是让学生一试身手后对所学知识作出及时反馈,小节的设计由学生自由表达,不限制形势,并运用多媒体演示增大了课堂容量,可使课堂活动变得生动活泼。同时让学生动口、动手、动眼、动脑,使学生学有兴趣,学有所获。

而由于本节课的时间处理的不够妥当,学生部分练习环节的缺失是我最大的遗憾。

初一数学教学反思 篇4

作为一名年轻教师,在教学工作中,我遇到了许多问题,在其他老师的帮助下,我对我初一下上半学期的数学教学做了如下的反思:

一、对教学目标反思

教学目标是教学设计中的首要环节,是一节课的纲领,对纲领认识不清或制定错误必定注定打败仗。对于我们新教师来说我自认为有以下几点不足:

1、对教学目标设计思想上不足够重视,目标设计流于形式。

2、教学目标设计关注的仍然只是认知目标,对“情感目标”、“能力目标”有所忽视,重视的是知识的灌输、技巧的传递,严重忽视了教材的育人功能。

3、教学目标的设计含混,不够全面、开放。

教学目标的制定要符合学生的认知程序与认知水平。制定的教学目标过高或过低都不利于学生发展,要让学生跳一跳摘到桃子。“这么简单的题都做不出来”、“这道题都讲过几遍了还不会做”,碰到这样情况,我们不应埋怨学生,而要深刻反思出现这样状况到底是什么原因,是学生不接受这样的讲解方式,还是认识上有差异;是学生不感兴趣,还是教师引导不到位等等;作为教师千万不能埋怨责怪学生,不反思自己,只会适得其反,以致把简单的问题都变成学生的难点,因此教学设计要能激发学生学习数学的热情与兴趣,要教给学生需要的数学。

二、对教学计划反思

在教学设计中,对教学内容的处理安排还存在以下几点缺乏:

(1)缺乏对已学知识的分析、综合、对比、归纳和整体系统化。

(2)缺乏对教学内容的教育功能的挖掘和利用。

三、对教学误区的反思

以前我认为教师讲得清,学生就听得懂。现在觉得如果教师讲课只顾自己津津有味,不顾来自于学生一方的反馈信息,教师与学生的的思维不能同步,学生只是被动地接受,毫无思考理解的余地,这样不是听不懂,便是囫囵吞枣。在课堂的业余时间段内让学生通过主动探索后发现知识,领悟所学。同时要及时反馈学生,加强效果回授,对未听清之处给学生以二次补授之机会,及时扫清障碍,将学习上的隐患消灭在萌芽状态。

作为没有经验的我常常埋怨学生,“这么简单的题都做不出来”!孰不知,教师与学生的知识水平与接受能力往往存在很大反差,就学生而言,接受新知识需要一个过程,绝不能用教师的水平衡量学生的能力。

因此,在教学时,必须全面理解学生的基础与能力,低起点、多层次、高要求地施教,让学生一步一个脚印,扎扎实实学好基础知识,在学知识中提高能力。

认清了问题,要解决问题并不是一朝一夕,一蹴而就的,我坚信只要我继续努力,更新观念,深刻反思自己的教学行为,教学规范,就一定能够有所发展,有所进步!

初一数学教学反思 篇5

1、充分运用直观的教具进行展示和演示,动手操作感知,以帮助学生建立表象、发展空间观念

利用电脑,演示直线、线段、射线三者之间的关系,体现了事物间相互联系、相互变化的观点。如何理解三者之间的关系,用电脑演示从直线上截取线段、截取射线。将线段一端延长变成射线。这样的演示,充分展示了三条线之间的关系,形象生动。比教师空洞,抽象的语言更有说服力。

利用红外线电筒演示射线和无限性,能让学生结合生活来学习数学,理解概念。如何感受无限。射线可以向一边无限延长的特征,也是我们在教学中解决的一个知识点。按照我们的理解射线在我们生活中的原型是没有的,即使比如像太阳光、宇宙中的光线,它们也都会射向地面、射向宇宙中的某一点,从某种意义上说,它也是一种线段。没有生活中的原型,我们是用激光电筒照到到窗外,想象一下假如没有任何物体的遮挡,一直照下去照下去……学生的思维随着老师的这一句话,头脑中自然而然感受到射线的无限性。

如何理解角的大小和边的长短无关,只和两条边叉开的大小有关。这是教学的一个难点。学生在学习这个知识点时,很容易被别的因素所左右。在教学时设计了三个层次。第一层在角的形成阶段,问学生角的边还能画长些吗?为什么可以?用电脑演示,将边延长或缩短,这都是因为角的两条边是由一点引出的两条射线。射线是可无限延长的,那么角的两条边也是可以无限延长的。第二层制作玩耍活动角时,通过角的变大变小,在演示中观察讨论得到角变大了,变小了,角的两条边的长短都没变,只是角的两条边的叉开的大小变了。第三层比较角的大小时,用不同颜色,不同长短的角来比较角的大小。大小一样而因为颜色的不同,让学生产生了激烈的争论,经过猜测,争论,最后想办法验证(重叠法比较)。排除了一切干扰因素,得到角的大小只和两条边叉开的大小有关。

2、给学生思维的空间和时间,自主探究、感受知识的形成发展过程。

在辨析直线、线段、射线三条线之间的关系时,放手让学生自己讨论,关于射线的知识既可从书上得来,又可从同学中得来。学习新知识的主动权掌握在学生的手里了。

在学习无限性时,用红外线电筒演示时,一般学生都赞同射线是无限的,但有一个同学提出了异议,他认为不是。因为当红外线投射在墙上时,就是有限的。这一问题的提出,引发了学生的激烈争论,在争论中明白了,当红外线投射在物体上时,它确实是有限的,具有两个端点,是线段。只有无阻挡,投向太空,看不到尽头时,才是无限的,才是射线。

在比角的大小时,学生通过猜想,想办法验证掌握了角的大小比较的方法。教师在练习设计中,设计了两个大小相似,既不能直观看出,又不能重叠比较的角,怎样比较?激发学生的兴趣,又为下节课角的度量打下了伏笔。

一节好的数学课,教师要善于放手,敢干放手。如果控制得太紧,问题提得太小,太细,使学生的思维空间变的很小,学生思维空间小了,思维的差异性呈现不够,资源生成也变得很少。

初一数学教学反思 篇6

在这个学期的教学中,我欣喜地看到传统的接受式教学模式已被生动活泼的数学活动所取代。课堂活起来了,学生动起来了:敢想、敢问、敢说、敢做、敢争论,充满着求知欲和表现欲。下面,我结合一些具体案例,对本学期教学进行反思:

一: 交流让学生分享快乐和共享资源

学生已有的生活经验、活动经验以及原有的生活背景,是良好的课程资源。在“图形认识初步”这节课中,有一道题问一个正方体的盒子有几个不同的展开面,我想,如果直接给学生答案有11种基本图形,他们不但不明白为什么,也想象不出来这11种基本图形会是怎样形成的,于是我让同学们从家带来正方体图形,让学生在课堂上进行剪,彼此间的交流,实现了他们对立体图形关键特性的理解和认识,大家共同分享发现和成功的快乐,共享彼此的资源。

二:从生活出发的教学让学生感受到学习的快乐

由于在新教材中没有 “代数式”这节课,但在选学内容中,却有“代数的故事”为了让学生能简洁地明白代数式,我采用了由生活实际出发,只要让学生能明白代数式实质就是用数来代替字母,就完成了教学目的,在举例时,指出,“其实,代数式不仅在数学中有用,而且在现实生活中也大量存在。下面,我说一个事实,如“一本书p元,6p可以表示6本书价值多少钱”,谁能用代数式表示出来。学生们开始活跃起来,受到启发,每个学生都在生活中找实例,学生从这节课中都能深深感受到“人人学有用的数学”的新理念。

三:实践是学好数学的前提

在本学期习题中有关 “几何体的切截”的问题,我想没有实践学生是不会有立体感的于是,我就让学生带来土豆,让学生在课堂上进行实践,调动了学生的学习积极性 。

四:在本学期中我还采取了激励政策,我从家中拿来印泥,如果某个学生回答的问题比他本人的能力强,就奖励给他一个大奖,这样就大大提高了学生的学习数学的兴趣。不论什么档次的学生都有获奖的可能,使学生能抬抬脚就得到满足。 以上就是我的教学反思,在教学中还有很多不足,在以后的教学中要继续努力,迈上新的台阶。

反思二

作为一名学从教数学多年的教师,不断摸索和学习中开展教学工作是我的工作本色。对于本学期的初一数学教学工作,我有所收获,也遇到了许多问题。现将本学期教学工作反思如下:

1、对教材内容的反思

教材是如此安排,我们教师在教学过程中就应该遵循教材的编排原则,先易后难的教授学生。提到教授学生,目标新课标要求不是教学生知识,而应该说成教学生方法,教学生学习的方法,让他们带着问题去学习,去思考。教师应该总体了解整个初中数学中所学习的内容有哪些,以便有针对性地教学。

2、对教学理念的反思

教学过程中应该把学生放在首位,学生是主体,教会他们方法才是重要的。以画图为例,尺规作图法,不是教他们如画角平分线,而是教会他们用尺规作图的方法,学会了这种方法,无论是画角平分线,还是画中线,高线,或者找中点等等,提示他们用尺规作图法,学生便知道怎么做了。再如等式的性质,只要教会他们用等式的性质的方法,在解方程时他们就觉得简单了,就算是解不等式时遇到移项,提示一下,他们也能够想到借用等式的性质。

3、对教学对象的反思

在教学时,必须全面理解学生的基础与能力,低起点、多层次、高要求地施教,让学生一步一个脚印,扎扎实实学好基础知识,在学知识中提高能力。

我这里重点要讲的是后进生的话题。一个班几十名学生,每个人都有自己的个性和优点,他们中有先进、中间、后进的不同层次和状态。后进生变差的原因又很复杂,多是外在的、客观的,很难凭借他们自身的力量去解决。作为一名负责任的老师,要充分了解后进生,正确对待后进生,关心热爱后进生。千万不能置之不理,将其边缘化。

4、对教学反馈意见的反思

教师与学生的知识水平与接受能力往往存在很大反差,就学生而言,接受新知识需要一个过程,绝不能用教师的水平衡量学生的能力。潜心于提高自己教学水平的教师,往往向学生征询对自己教学的反馈意见,这是教师对其教学进行反思的一个重要的渠道。

若在课堂上设计了良好的教学情境,则整节课学生的学习积极性始终很高。课后我总结出以下两点体会:(1)抓住知识本质特征,设计一些诱发性的练习能诱导学生积极思维,刺激学生的好奇心。(2)问题的设计不应停留在简单的变式和肤浅的问答形式上,而应设计一些既能让学生动手触摸、又能动脑思考的问题,这样可使学生在“观察、实践、归纳、猜想和证明”的探究过程中,激发起他们对新知识的渴望。

教学的过程不仅是促进学生学习的过程,也是教师指导自己认识自我的过程。我坚信只要我继续努力,更新观念,深刻反思自己的教学行为,教学规范,就一定能够有所发展,有所进步!

初一数学教学反思 篇7

结合本次月考,我主要根据实际情况,从两个方面进行分析,一是:试题的出题特点;二是:学生考试情况:学情分析,学生出错的原因分析。

一、试题的出题特点:

本次出题主要是查看学生的基础知识的掌握情况,注重课本知识和同步训练上的题目学生掌握的情况,题目很多是来自于学生所做的原题或原题中略微改动的题目。但是从学生的做题情况看,出现的错误还是比较严重,我分析了一下。

二、出现错题的原因无外乎以下几种情况:

(1)概念不清或模糊

这类问题包括知识结构板块、知识点、基础知识等等不清楚或模糊。比如设置在题中的隐含条件、限制条件和关键词语等。这类问题往往一点就破,学生一般会认为自己是弄懂了,实际上是概念模糊;有的则是自身知识结构体系脉络不清,以致给出错误答案。

(2)记忆模糊

这类问题主要是对概念和原理等的理解过于浅显,或记得不牢,或只知其一,不知其二,当问题交织在一起时,便分辨不清,导致答题时似是而非。当问题成堆时,面对题目便会显得迷茫、不知所措、甚至于无精打彩,以至于懈怠下去。

(3)顾此失彼

考题中涉及的知识点稍多一点,过程稍复杂一些,大脑就运转不过来,顾头不顾尾。这主要缘于典型题做得不够,做得不精,做题的难度系数也较低,并对教材中的观点、基本原理和基本概念等理解得不深不透。

(4)考场时间分配不合理:

平时没有从心理上把练习和考试作为正式考试来对待,没有把一般性的考试作为训练考试时间分配的练兵场,导致正式考试时虎头蛇尾,眼睁睁看着自己熟悉的题却没有时间下手。

教学反思

本周学校里组织了月考活动,以便检查了解近期学生的学习情况,从而让老师查漏补缺,让学生及时调整自己的学校方法和学习动机。在考试中了解自己的准确位置。

本次我们出题本着课本为重点,题目大多为基础知识。但学生考得整体不是很理想,尤其平时反复练习的知识点,掌握不了的同学还是很多,大多由于粗心,但主要是因为多数同学平时学习的态度认真程度不够导致的,由此我认为以后把重点放到知识点外,要加大重点练习,加大落实力度很有必要。

初一数学教学反思 篇8

初中数学是一个整体。初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。 现的初二学生中,有一部分新同学就是对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力,希望参加我们的辅导班来弥补的。这个问题究其原因,主要是对初一数学的基础性,重视不够。我们这里先列举一下在初一数学学习中经常出现的几个问题:

1、对知识点的理解停留在一知半解的层次上;

2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;

3、解题时,小错误太多,始终不能完整的解决问题;

4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;

5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;

以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。

那怎样才能打好初一的数学基础呢?

(1)细心地发掘概念和公式

很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?

我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

(2)总结相似的类型题目

这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

我们的建议是:“总结归纳”是将题目越做越少的最好办法。

(3)收集自己的典型错误和不会的题目

同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,

是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。

我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。

(4)就不懂的问题,积极提问、讨论

发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。

讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。

我们的建议是:“勤学”是基础,“好问”是关键。

(5)注重实战(考试)经验的培养

考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。

我们的建议是:把“做作业”当成考试,把“考试”当成做作业。

以上,我们就初一数学经常出现的问题,给出了建议,但有一点要强调的是,任何方法最重要的是有效,同学们在学习中千万要避免形式化,要追求实效。任何考试都是考人的头脑,决不是考大家的笔记记的是否清楚,计划制定的是否周全。

习习惯、合作意识和团队精神均能得到很好的培养。

初一数学教学反思 篇9

最近我上了一节初一新教材的数学公开课:等式和它的性质,在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手、动脑、操作、观察、归纳出等式性质,体验知识的形成过程,力求体现主体参与、自主探索、合作交流、指导引探的教学理念。

以下将教学过程作简要回述:

整个教学过程主要分三部分:第一部分是等式的概念,我采用“归纳思维模式”教学,第一阶段:创设情境——请同学们举出几个等式的例子;第二阶段:形成概念——让学生观察这些等式的共同特点,想一想什么叫做等式;第三阶段:应用概念———让学生识别哪些是等式,哪些不是,并说出为什么?第二部分是探索等式的性质,采用体验探究的教学方式,首先由学生两人一组动手实验,要求分别放上砝码使天平保持平衡,并填写实验表;再让学生观看电脑演示的书中71页的实验,提出问题:通过天平实验,要使天平平衡,你觉得应注意什么?你能联想到等式有什么性质?由学生独立思考归纳出等式性质1,然后让学生观看书中71页第二个实验的电脑演示,并引导学生从天平左右两边的数量关系上思考归纳出等式性质2,最后通过练习巩固等式的两条性质,并让学生从练习中思考运用等式的性质时应注意些什么?第三部分是拓展与提高,通过两个填空,揭示等式的对称性和传递性为后面学习一元一次方程和二元一次方程组作好了铺垫。