首页 > 教学教案 > 教学计划 > 最新高二数学的教学计划【优秀5篇】正文

《最新高二数学的教学计划【优秀5篇】》

时间:

时间过得真快,总在不经意间流逝,我们的工作又迈入新的阶段,请一起努力,写一份计划吧。你所接触过的计划都是什么样子的呢?下面是的小编为您带来的最新高二数学教学计划【优秀5篇】,希望可以启发、帮助到大家。

课标解读 篇1

1。有助于学生数形结合思想的培养。

解析几何的本质是用代数的方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。

2。是培养学生运算能力的重要载体。

运算思想是数学中最重要的思想之一。解析几何的运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的几何结论,这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。

高二数学教学计划 篇2

一、学生基本情况

261班共有学生75人,268班共有学生72人。268班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣,

二、教学要求

(一)情意目标

(1)经过分析问题的方法的教学、经过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

(2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

(3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程的幻妙多姿

(二)能力要求

1、培养学生记忆能力。

(1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

(2)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)经过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)经过解不等式及不等式组的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)经过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

3、培养学生的思维能力。

(1)经过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

(2)经过解析几何与不等式的一题多解、多题一解、经过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

(3)经过不等式引伸、推广,培养学生的创造性思维。

(4)加强知识的横向联系,培养学生的数形结合的能力。

(5)经过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。

(6)经过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

4、培养学生的观察能力。

(1)在比较鉴别中,提高观察的准确性和完整性。

(2)经过对个性特征的分析研究,提高观察的深刻性。

(三)知识要求

1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;

2、经过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

三、教材简要分析

1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。

2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。

3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并经过分析标准方程研究它们的性质。

四、重点与难点

(一)重点

1、不等式的证明、解法。

2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。

3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

(二)难点

1、含绝对值不等式的解法,不等式的证明。

2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。

3、用坐标法研究几何问题,求曲线方程的一般方法。

五、教学措施

1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

2、持之以恒与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

3、加强教育教学研究,持之以恒学生主体性原则,持之以恒循序渐进原则,持之以恒启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。

4、积极参加与组织集体备课,共同研究,努力提高授课质量

5、持之以恒向同行听课,取人所长,补己之短。相互研究,共同进步。

6、持之以恒学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。 7、加强数学研究课的教学研究指导,培养学识的动手能力。

六、课时安排

本学期共81课时

1、不等式18课时

2、直线与圆的方程25课时

3、圆锥曲线20课时

4、研究课18课时

高二数学教学计划 篇3

教学目标;

(1)了解频数、频率的概念,了解全距、组距的概念;

(2)能正确地编制频率分布表;会用样本频率分布去估计总体分布;

(3)通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法、

教学重点:正确地编制频率分布表、

教学难点;会用样本频率分布去估计总体分布

内容分析

1、在统计中,用样本的有关情况估计总体的相应情况大体上有两类:一是用样本的频率分布去估计总体分布;二是用样本的某种数字特征去估计总体相应数字特征。本节课解决前者的问题。

2、讨论样本频率分布的内容在初中”统计初步”中进行了简要的介绍,由于很长时间没有接触这方面知识,因此有必要通过一例重温频率分布有关知识,突出掌握解决问题的步骤,使学生了解处理数据的具体方法。

3、介绍历史上从事抛掷硬币的几个案例,学习科学家对真理执着追求的精神。

4、频率分布的条形图与直方图是有区别。条形图是用高度来表示频率,直方图是用面积来表示频率。

教学过程

1、引入新课

(1)介绍对“抛掷硬币”试验进行研究的科学家。

(2)本次试验结果。

(3)画出频率分布的条形图。

(4)注意点:①各直方长条的宽度要相同;②相邻长条之间的间隔要适当。

(5)结论:当试验次数无限增大时,两种试验结果的频率大致相同。

2、总体分布

精确地反映了总体取值的概率分布规律。研究概率分布往往可以研究其频数分布、频率分布,及累积频数分布和累积频率分布。后者作为阅读教科书内容。

3、复习频率分布

(演示)问题:有一个容量为20的样本,数据的分组及各组的频数如下:

[12、5,15、5) 2 [15、5,18、5) 3 [18、5,21、5) 5

[21、5,24、5) 4 [24、5,27、5) 1 [27、5,30、5] 5

(1)列出样本的频率分布表和画出频率分布直方图。

(2)频率直方图的横轴表示___________;纵轴表示___________。频率分布直方图中,各小矩形的面积等于___________,各小矩形面积之和等于___________。频率直方图的主要作用是___________。

讲解例题

为了了解学生身体的发育情况,对某重点中学年满17岁的60名男同学的身高进行了测量,结果如下:

身高 1、57 1、59 1、60 1、62 1、64 1、65 1、66 1、68

人数 2 1 4 2 4 2 7 6

身高 1、69 1、70 1、71 172 1、73 1、74 1、75 1、76 1、77

人数 8 7 4 3 2 1 2 1 1

(1)根据上表,估计这所重点中学年满17岁的男学生中,身高下低于1、65m且不高于1、71m的约占多少?不低于1、63m的约占多少?

(2)画出频率分布直方图,说出该校年满17岁的男同学中身高在哪个范围内的人数所占比例最大?如果该校年满17岁的男同学恰好是300人,那么在这个范围内的人数估计约有多少人?

(过程略)

注意点:主要包括两部分:前面重点讲解如何根据数据画出频率分布的直方图,后面重点讲解如何根据样本的频率分布去估计总体的相关情况。

(a)计算最大值与最小值的差

(b)确定组距与组数。

组距的确定应根据数据总体情况,自主选择。本题将组距定为2较为合适,因而组数为11。

(c)决定分点。

分点要比数据多一位小数,便于分组。分组区间采用左闭右开。

(d)列出频率分布表(见教科书)。

(e)画出频率分布图(见教科书)。

4、得到样本频率后,应对总体的相应情况进行估计

5、课堂练习

教科书习题 1、2第2题。

板书设计

一、概念理解 二、应用

1、频数、频率的容量的关系 例

2、频率的取值范围 三、小结

3、分布频率分布表

四、作业

高二数学的教学计划 篇4

根据本学期进度计划,在教参的课时分配的基础上,除去复习所用的课时,第九周上结束7.5曲线和方程后进行期中考试,中期考试后从§7.6圆的方程上起,到第十六周结束新课,第十七、十八周上一点下学期的内容,十九、二十周进行期末复习与考试。

教学中估计困难不少:学生人多,数学基础的差异程度加大,为教学的因材施教增加了难度。与其他学校相比, 数学教学 时间相对较少,练习与讲评难以做到充分。

为了能顺利完成今年的教学任务,准备采取以下教学措施。

每周至少进行一次集体备课。每次备课都要用一定的时间交流一下前一段的教学情况,进度、学生掌握情况等。通过全组的团结合作,应该可以顺利完成教学任务。

老师要安排一定量的。习题并进行及时进行检查。存在的普遍性问题最好安排时间讲评。

平常意义上的第二课堂辅导学生,主要是以兴趣班的形式,以复习巩固课堂教学的同步内容为主,一般只选用常规题为例题和练习,难度低于高考接近高考,用专题讲授为主要形式开展辅导工作。

对已经出现数学学习困难的学生,教师的下班辅导十分重要,所以每位老师必须重视搞好辅导工作。

高二数学教学计划 篇5

一、学情分析:

学生学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,所学知识浮于表面,不愿意深究。因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

二、教法分析:

1、在“三五五”教学模式下,改善师生之间的关系,提高亲和力,以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

3、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

4、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

三、具体教学要求:

1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。

2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点。

3、(理)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

4、理解复数相等的充要条件;了解复数的代数表示法及其几何意义;会进行复数代数形式的四则运算;了解复数代数形式的加、减运算的几何意义。

5、(理)理解分类加法计数原理和分类乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题;理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。

6、(理)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。

7、了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题:了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;了解假设检验的基本思想、方法及其简单应用;了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用。

8、了解程序框图;了解工序流程图(即统筹图);能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;了解结构图;会运用结构图梳理已学过的知识、整理收集到的资料信息。

四、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。