首页 > 教学教案 > 教学设计 > 新课标数学《平行四边形的面积》优秀教学设计【优秀10篇】正文

《新课标数学《平行四边形的面积》优秀教学设计【优秀10篇】》

时间:

作为一名教职工,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。怎样写教案才更能起到其作用呢?下面是小编辛苦为大家带来的新课标数学《平行四边形的面积》优秀教学设计【优秀10篇】,如果能帮助到您,小编的一切努力都是值得的。

平行四边形的面积公式教学设计范文(通用10 篇1

教学目标:

1、能用割补的方法,把平行四边形转化成面积不变的长方形,通过长方形面积的计算方法推导出平行四边形面积的计算方法

2、能用平行四边形面积的计算方法解决简单的实际问题。

3、在操作、观察、比较中,渗透转化的思想方法。

4、在探究活动中,体验到成功的快乐。

教学重点:

推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。

教学难点:

推导平行四边形面积公式

教学准备:

课件平行四边形硬纸片剪刀透明方格纸

教学过程:

一、情境激趣:

师:同学们,你们去过宁江区的江滨公园?美不美?公园还要在这里铺草坪,这是其中的两块(电脑出示草坪图),根据图中提供的数学信息你能提出哪些数学问题?

1、铺长方形草坪需要多少钱?(根据长方形的面积公式学生可以解决)2、铺平行四边形的草坪需要多少钱?师:需要先求什么?

生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)

二、实验探究:

1、猜想

那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

2、实验

1)独立自主探究:

师:每个小组的桌上都有一些学具,有数格子用的格子纸、印的平行四边形和长方形和表格、剪刀、平行四边形,想一想你打算用什么方法来研究?

生:我用数格子的方法。

师:数格子时,不足一格的按一格算,把得到的数据填在表格里

师:还有什么方法?

生:我用剪一剪、拼一拼的方法。

师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。

2)小组内交流:

师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。

3)学生汇报:

第一个小组:

(1)数格子(把表格带到前面说)

(2)剪拼

师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)

是这样吗?师课件演示解说强调平移

师:还有其他的剪拼方法吗?(你们组的方法与人不同,让同学们又学了一招啊!)生汇报后师演示

(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)

师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)

师:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式又该怎样写呢?s=ah

四、运用公式解决

师:现在我们来算一下铺这块平行四边形草坪要用多少钱?

(生口算)

五、拓展练习

1、求下列图形的面积是多少?

底15厘米,高11厘米

(不仅准确计算出了结果,速度还很快,真不错。)

2、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)

六、全课小结:

师:这节课,你是怎么学习的?你有哪些收获?

(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写一篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。

课后反思

课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:

1、适时渗透、领悟思想方法

数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。

2、适时引导、主动建构知识

学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。

3、适时点拨、有效进行指导

探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。

课例点评

这节课教师在教学时以图形内在联系为线索,以转化这条数学思想方法为主线,在操作、观察、比较活动中,通过孕伏、理解、强化的过程,让学生在获得知识的同时,领悟转化的数学思想方法。具体表现在以下几点:

1、在情境中蕴含知识,孕伏思想方法

这节课情境的创设一方面紧紧地围绕所要探索的数学知识,另一方面又充分体现了知识之间的内在联系。创设了江滨公园铺草坪的情境图,分别呈现了一个长方形和一个平行四边形的草坪,并提供每平方米草坪的价格,引导学生根据信息提出问题。这一情境中既有长方形面积的计算,又有平行四边形面积的计算,把这些知识都融入一个具体的生活情境中,既唤起了学生已有的知识经验,又暗含了平行四边形的面积与长方形的面积有关。

2、在探究中体验知识,理解思想方法

这节课沿着“提出猜想思考验证方法实践验证”这个过程进行。一是独立探究。让每个学生根据自己的体验,用自己的思维方式进行探究,并且提出了活动要求。一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去探究所研究的图形与转化后的图形各部分之间有什么联系,从而找到平行四边形面积的计算方法。二是合作探究。在学生独立探究的基础上,让学生在小组内进行交流。通过交流,学生知道,任何形状的平行四边形都可以转化成长方形,这样,他们对图形变换的认识不再是个案的体会,而是对图形本质联系的体验。

3、在反思中提炼知识,强化思想方法

教师在教学中注重引导学生对转化过程进行反思。第一次是在学生汇报交流之后,教师用课件呈现图形转化的过程引导学生进行反思,重点是理解转化的思想方法;第二次是课即将结束时,教师引导学生总结这节课学习内容时再次回放图形转化的过程,重点是强化转化的思想方法。并引导学生:“在今后学习其它平面图形的面积时,还要用到这种方法。”这样为学生以后学习三角形、梯形面积的计算进行了思想方法的延伸。

总之,这节课教学时有两条主线,一条是数学基础知识,另一条是数学思想方法,并且把领悟数学思想方法作为数学教学的要务,把掌握数学思想方法作为学生数学学习的最高境界。

操作探索,推导公式 篇2

1、数方格法求面积(出示)

给上面的二块地的长、宽与底、高分别缩小100倍(变成了6厘米和4厘米)再加上网格,如上图,(不满一格按半格计算,每小格表示1平方厘米)数完后,你发现了什么?

这样设计,让学生掌握用数来计算平行四边形面积的方法,进一步证实自己的猜想是正确的,初步感知到了平行四边形的面积=底×高。

教学过程: 篇3

1、什么是面积?

2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

二、导入新课

根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

三、讲授新课

(一)、数方格法

用展示台出示方格图

1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法

1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的。关系?

教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

5、引导学生总结平行四边形面积计算公式。

这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

6、教学用字母表示平行四边形的面积公式。

板书:S=a×h,告知S和h的读音。

说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

(6)完成第81页中间的“填空”。

7、验证公式

学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

(四)应用

1、学生自学例1后,教师根据学生提出的问题讲解。

3、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等()

(2)平行四边形底越长,它的面积就越大()

4、做书上82页2题。

四、体验

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

五、作业

练习十五第1题。

六、板书设计

平行四边形面积的计算

长方形的面积=长×宽 平行四边形的面积=底×高

S=a×hS=ah或S=ah

课后反思:

教学目标: 篇4

1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3.对学生进行辩诈唯物主义观点的启蒙教育.

说预设效果 篇5

这节课的设计,给学生充足的眼看、手做、耳听、嘴说、脑想的时间和空间,学生在实践中理解新知,并尽可能地从多角度来验证结论,这使学生求异思维和创新能力得到最大限度的训练。培养了学生动手操作能力,逻辑思维能力,使学生掌握学法,为学习提供一把释疑解难的钥匙。

平行四边形的面积教学设计 篇6

教学目标

1、知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

2、能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。

3、过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。

4、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

教材分析重点使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。

难点平行四边形面积公式的推导过程。

教具

1、多媒体计算机及课件;

2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。

教学过程

一、质疑引新:

1、这图形你认识吗?长方形面积公式是怎样的?宽]这又是什么图形?指出平行四边形的底和高?

2、谈话引入:你想知道你所做的平行四边形面积有多大吗?

二、引导探求:

㈠提出问题:

1、用数方格法求平行四边形的面积

⑴谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。

⑵数出方格图中平行四边形的面积。提问:

A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)

B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?

⑶若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?

2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。

3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?

电脑逐步显示:平行四边形的面积=长方形的面积。

平行四边形的底=长方形的长;

平行四边形的高=长方形的宽;

引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!

电脑展示:

(1)底、高、不变,面积不变。

(2)底、高改变,面积变化。

你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?

㈡推导公式:

1、小组合作研究:

长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)

⑴怎样剪拼才能将平行四边形转化成长方形?

⑵转化后的图形与原平行四边形有什么关系?

(要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)

2、各小组实验操作,教师巡视指导。

3、各小组交流实验情况:

⑴谁愿意把你的转化方法说给大家听呢?请上台来交流!

⑵有没有不同的剪拼方法?(继续请同学演示)。

⑶电脑演示各种转化方法。

4、小组合作讨论归纳总结规律:

⑴平行四边形剪拼成长方形后,什么变了?什么没变?

⑵剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

⑶剪样成的图形面积怎样计算?

⑷小组上台汇报,指着图形说一次得出:

因为:长方形的面积=长×宽

所以:平行四边形的面积=底×高(同位指着图形说)

7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“。”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

㈢巩固公式:

刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)

㈣应用解决:

下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)

板书:32.6×8.4≈274(平方米)

答:它的面积约是274平方米。

(挑一学生的作业投影评讲)

《平行四边形的面积》五年级数学教案 篇7

教材分析

“平行四边形的面积”是本册书第五单元“多边形的面积的计算”第一小节的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基础

学情分析

1. 学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。

2.但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

教学目标

1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。

2.过程与方法目标:

(1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。

(2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。

3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

教学重点和难点

重点:理解掌握平行四边形的面积计算公式,并能正确运用。

难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

教学过程

(一)情境引入,以旧探新

这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现)

这块花坛既不是长方形也不是正方形,如何求出这块地的面积?

为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来学平行四边形的面积。(板书:平行四边形的面积)

(二)自主探究

方法一:用数方格的方法求平行四边形的面积

以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡)

1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。

根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律!

2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。

(1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,)

(2)根据你的发现你能想到什么?(平行四边形的面积就等于底乘高)

(三)动手操作,验证猜想,得出结论

方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。

1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

2.动手实验:

(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。)

(2)学生实验操作,教师巡视指导。

3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么?

(1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变)

(2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。)

(3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽)

(4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高)

4.全班交流推导公式:

(1)谁愿意把你的转化方法说给大家听呢?请上台来交流!

(2)有没有不同的剪拼方法?(继续请同学演示)。

研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。

(3)板书平行四边形面积推导过程

(4)字母公式:在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,那么平行四边形的面积计算公式用字母表示出来就是S=ah

(四)、运用公式,解决实际问题

知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。

1.出示书上82页的1题,请大家做一做。

2.汇报交流:谁来说一说你是怎么做的?

3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高)

(五)、巩固练习,我能填得准。

(1)平行四边形的面积公式用字母表示为( )。

(2)一个平行四边形的底是9cm,对应的高是4cm,面积是( )。

(六)、课堂总结

反思一下刚才我们的学习过程,你有什么收获?

创设情境,设疑引入 篇8

王林家和张强家各有一块地,如图:

4米 4米

王林家 张强家

6米 6米

可是谁家的地面积能大些呢?他俩都想知道,同学们,你们愿意帮助他们吗?大家先猜猜看?让学生猜想长方形和平行四边形面积的大小?为什么?主要是向学生暗示了当长方形与平行四边形长与底,宽与高分别相等时,它们的面积会相等,初步感知到平行四边形的面积与底和高有关。王林家的地是长方形,我们能求出面积。而张强家的地是平行四边形,怎样来求平行四边形的面积呢?这就是我们今天要研究的平行四边形的面积计算。

这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。

巩固练习,应用深化 篇9

1.现在我们不用数方格的方法,也能知道王林家和张强家地面积的大小了。并完成P71 试一试

2.完成P71练一练1、2

3.选择正确的算式:

求出下图的面积(单位:分米)

A.12×5( ); B.12×10( ); C.10×6( ); D.5×6( )。

平行四边形的面积教学设计与评析 篇10

教学内容:

《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。

教学目标

1.知识与技能

1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2)使学生理解转化的思想,初步学会运用转化法来解决问题。

3)培养学生的合作意识和自主探究解决问题的能力。

2.过程与方法

让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。

3.情感态度与价值观

通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。

教学重点、难点

教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

教学准备:

多媒体课件、平行四边形学具等。

教学过程:

一、设置悬念激发兴趣

师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?

[学情预设:摇头或不知道。]

(出示:中国版图)

师:请大家仔细观察,山西省近似我们学过的什么平面图形?

[学情预设:学生根据观察可能会说:四边形或平行四边形。]

师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?

[学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]

师:对,这节课我们就一起来研究“平行四边形的面积”。

(引出课题并板书:平行四边形的面积)

[设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]

二、动手操作引发欲望

1、回忆平行四边形的底和高。

师:同学们,平行四边形有哪些特征,你们还记得吗?

[学情预设:

生1:平行四边形对边平行、对角相等。

生2:还有底和高。]

师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?

[学情预设:学生根据不同的高,找到所对应的底。]

师:由此,你发现了什么?

生:底要和高相对应。

师:对,这一点值得注意。

[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]

2、第一次探究

师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。

(小组活动,教师巡视)

[学情预设:

生1:直接数。

生2:间接数。

生3:沿边上的高剪开。

生4:沿中间的高剪开。

生5:沿两边的高剪开。……]

师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。

(小组汇报)

[学情预设:

组1:用直接数方格的方法。]

[问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]

师:哪个小组和他们的方法不一样?

[学情预设:

组2:间接数。

组3:沿边上的高剪开。

组4:沿中间的高剪开。

组5:沿两边的高剪开。……]

师:由此,你又发现了什么?

小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。

[设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]

3、第二次探究

师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?

师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?

生:不能。

师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?

生:有。

[学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]

(板书:长方形的面积=长×宽

平行四边形的面积=底×高)

师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。

[学情预设:学生汇报自学成果,教师板书字母公式。]

师:用字母表示平行四边形的面积公式:S=ah

小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。

即:平行四边形的面积=底×高

[设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]

三、联系实际解决问题。

师:解决课前遗留问题:山西省的面积大约有多大?

[设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]

四、课后延伸渗透转化

师:吉林省近似学过的什么平面图形?

生:三角形

师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。

[设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]

五、板书设计:

平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高