首页 > 教学教案 > 教学设计 > 几何画板课件精选7篇正文

《几何画板课件精选7篇》

时间:

初中数学课件几何画板 篇1

教案

课 题:几何画板简介

教学目标:1)通过几何画板课件演示展示其魅力激起兴趣

2)了解几何画板初步操作

教学重点:让学生了解几何画板的工作界面

教学难点:能用几何画板将三角形分成四等份,并用几何画板验证。 教学过程:

一、概述几何画板

几何画板是专门为数学学习与教学需要而设计的软件。有人说它是电子圆规,有人说它是绘图仪,有人说它是数学实验室。它号称二十一世纪的动态几何。它可帮助我们理解数学,动态地表达数量关系,并可设计出许多有用或有趣的作品。

二、几何画板作品展示

三、几何画板简介

1)启动

开始|程序|几何画板|几何画板。启动几何画板后将出现 菜单、工具、画板。工具(从上到下) 选择 、画点、画圆 、画线、文本 、对象信息、脚本工具目录。

2)操作初步

1、文件

新画板 打开一个新的空白画板。

新脚本 打开一个新的空白脚本窗口。用于录制画板的画图过程。 打开 打开一个已存在的画板文件(.gsp)或脚本文件(.gss)。

保存 [保存当前画板窗口画板文件或脚本窗口脚本文件],路径+文件名,确认。

打印预览

打印

退出

2、选择 几何画板的操作都是先选定,后操作。

选工具(选择 画点 画圆 画线 文本 对象信息 脚本工具目录) 单击:工具选项。

选选择方式 移到选择按左键不放→平移/旋转/缩放;拖曳到平移/旋转/缩放;放→选定。

功能:移动选定的目标按平移/旋转/缩放 方式移动。

选一个目标 鼠标对准画板中的`目标(点、线、圆等),指针变为横向箭头,单击。

选两个以上目标 法一 第二个及以后,Shift+单击。

选两个以上目标 法二 空白处拖曳→虚框;虚框中的目标被选。 选角 选三点:第一、第三点:角两边上的点;第二点:顶点。 不选 单击:空白处。

从多个选中的目标中不选一个 Shift+单击。

选目标的父母和子女 选定,编辑|选择父母/或选择子女。

选所有 编辑|选择所有。

选画点/画圆。,编辑|选择所有点/圆。。

3、删除

删除目标 选目标;Del键(注:同时删除子女目标)。

复原一步 Ctrl+Z = 编辑|复原。

画板变成空白画板 Shift+Ctrl+Z = Shift+编辑|复原。

4、显示

线类型 设置选定的线/轨迹 为 粗线/细线/虚线。应用 使对象更突出。 颜色 设置选定的图形的颜色。应用 使对象更突出。

字号/字型 设置选定的标注、符号、测算等文字的字号和字型。

字体 设置选定的标注、符号、测算等文字的字体。

显示/隐藏 显示/隐藏 选定的目标(Ctrl+H)。

显示所有隐藏 显示所有的隐藏目标。

显示符号 显示/隐藏 选定目标的符号。

符号选项 更改 符号/符号序列。

轨迹跟踪 设置/消除 选定目标为轨迹跟踪状态。

动画 根据选定的目标条件进行动画运动。

参数设置 角度、弧度、精确度等的设置。

5、对象信息 单击对象信息→?;单击对象→简单信息;双击对象→目标信息对话框。

6、快捷键 隐藏Ctrl+H显示符号Ctrl+K轨迹跟踪Ctrl+T当前目标可操作的内容右键。

(以上简略选讲1、2、3)

四、熟悉几何画板的界面,了解常用工具的用法,

五、把一个三角形分成四等份:

1)用画线工具画一个三形,

2)标注:选文本工具,单击画好的点,用文本工具双击显示的标签,可进行修改。

3)选择“构造”,---“画中点”

六、验证面积相等:

1)按住shift键,选取点。

2)“构造”---“多边形内部”。

3)“测算”---“面积”

七、等分线段:

1)画射线作辅助线。

2)选取一段做标记向量。

3)“变换”---“平移”。

4)“作图”---“平行线”。

用平行线的性质等分线段。

八、画基本图形

1、画点 选画点,单击画板上一点。(并显示标签)

2、画圆 画圆的两种方法及区别。 (设置不同显示方式)

3、选线段/射线/直线 选画线;按左键不放→线段/射线/直线

九、课后反思

在图中标注文本文字,用辅助线把一线段如何分为四等份

几何画板自主学习论文 篇2

分析:在一个圆中同弧所对的圆周角是圆心角是一半,根据该定理,半圆所对的圆周角巧好是90°,所以我们可以通过制作直角三角形来制作半圆。

具体的操作步骤如下:

1.打开几何画板,单击“自定义工具”——“三角形”——“直角三角形”,在画布上面单击一下鼠标,然后拖动鼠标就可以画出一个直角三角形。

使用自定义工具绘制直角三角形示例

2.用“移动箭头工具”选择直角三角形的三个顶点,单击菜单栏“构造”——过三点的弧,得到如下图所示图形。

选中直角三角形三个顶点构造过三点的弧示例

3.分别选中三角形的两直角边,右键选择“隐藏线段”,这样半圆就制作好了,如下图所示。

选中直角三角形两直角边执行隐藏命令

以上给大家讲解了利用几何画板制作半圆的方法,主要在于对半圆性质的了解,然后有针对的绘图。

圆台是一种上面小下面大的立体图形,在几何画板里面究竟能够怎样最快的制作出圆台呢?下面就让我们一起来看看几何画板圆台的制作方法。

一、绘制圆台

1.打开几何画板,单击侧边栏“自定义工具”——“立体几何”——圆台。

选择“自定义工具”——“立体几何”——“圆台”示例

2.用鼠标在空白位置点一下确定圆台底面圆圆心,用鼠标拖动调整好圆台的大小和方向再单击鼠标即可绘制出圆台。

利用几何画板自定义工具绘制圆台示例

二、调整圆台

1.调整圆台大小和方向

按住底面圆的圆心红点拖动,可以调整底面圆的大小从而调整圆台大小,并通过旋转调整圆台的方向。

拖动底面圆的圆心调整圆台大小和方向

2.调整圆台的位置

按住圆台上面的任何一条线上下左右拖动都可以调整圆台水平和垂直位置,

拖动圆台上面的线调整圆台的位置

三、美化圆台

此时的圆台看上去有一些多余的线条我们选择这些线条单击右键选择“隐藏线段”,即可去掉。此时在右侧边还少一条线,我们可以调用“线段直尺工具”画一条线即可。

隐藏不必要的对象并构造线段来美化圆台。

下面我们来看看如何用几何画板度量圆的半径。

具体的操作步骤如下:

一、绘制圆

打开几何画板,单击左边侧边栏“点工具”,在几何画板上面绘制两个点作为圆的圆心和圆周上面一点,两点之间的距离为半径;

使用点工具绘制圆的圆心和圆周上点示例

单击侧边栏“移动箭头工具”选择刚才绘制的两个点,并单击菜单栏“构造”——以圆心和圆周上的点绘圆,可以看到绘制出了一个圆,如下图所示。

以圆心和圆周上点绘制圆示例

二、度量半径

选择侧边栏“移动箭头工具”选择圆,单击菜单栏“度量”——“半径”,此时就可以看到画布上面显示出了圆的半径,如下图所示。

选中圆执行“度量”——“半径”度量圆半径

下面我们就一起来看看几何画板度量圆周长的方法

一、绘制圆

打开几何画板,单击侧边栏“圆工具”,在画布上面单击确定圆心并移动鼠标确定半径后画出一个圆。

在几何画板中使用圆工具绘制圆示例

二、度量周长

1.选择侧边栏“移动箭头工具”,选择整个圆,单击菜单栏“度量”——“圆周长”;

选中圆执行“度量”——“圆周长”命令示例

2.然后我们可以看到圆的周长已经出现在画布上,如下图所示。

在画布上显示出圆周长数据示例

几何画板使用教程 篇3

《几何画板》是一个适用于几何(平面几何、解析几何、射影几何等)教学的软件平台,它为老师和学生提供了一个观察和探索几何图形内在关系的环境。它以点、线、圆为基本元素,通过对这些基本元素的变换、构造、测算、计算、动画、跟踪轨迹等,构造出其它较为复杂的图形。

下载地址:几何画板

完整版教程下载

《几何画板》最大的特色是“动态性”,即:可以用鼠标拖动图形上的任一元素(点、线、圆),而事先给定的所有几何关系(即图形的基本性质)都保持不变。

举个简单的例子。我们可以先在画板上任取三个点,然后用线段把它们连起来。这时,我们就可以拉动其中的一个点,同时图形的形状就会发行变化,但仍然保持是三角形。再进一步,我们还可以分别构造出三条形的三条中线。这时再拉动其中任一点时,三角形的形状同样会发生变化,但三条中线的性质永远保持不变。这样学生就可以在图形的变化中观察到不变的规律:任意三角形的三条中线交于一点。

请注意:上述操作基本上与老师在黑板上画图相同,

但当老师说“在平面上任取一点”时,在黑板上画出的点却永远是固定的。所谓“任意一点”在许多时候只不过是出现在老师自己的头脑中而已。而《几何画板》就可以让“任意一点”随意运动,使它更容易为学生所理解。所以,可以把《几何画板》看成是一块“动态的黑板”。《几何画板》的这种特性有助于帮助学生在图形的变化中把握不变的几何规律,深入几何的精髓。这是其它教学手段所不可能做到的,真正体现了计算机的优势。

另一方面,利用它的动态性和形象性,还可以给学生创造一个实际“操作”几何图形的环境。学生可以任意拖动图形、观察图形、猜测并验证,在观察、探索、发现的过程中增加对各种图形的感性认识,形成丰厚的几何经验背景,从而更有助于学生理解和证明。因此,《几何画板》还能为学生创造一个进行几何“实验”的环境,有助于发挥学生的主体性、积极性和创造性,充分体现了现代教学的思想。

《几何画板》的操作非常简单,一切操作都只靠工具栏和菜单实现,而无需编制任何程序。在〈几何画板〉中,一切都要借助于几何关系来表现,因此用它设计软件最关键的是“把握几何关系”,而这正是老师们所擅长的;但同时这也是它的局限性:它只适用于能够用几何模型来描述的内容―例如几何问题、部分物理、天文问题等。

用《几何画板》开发软件的速度非常快。一般来说,如果有设计思路的话,操作较为熟练的老师开发一个难度适中的软件只需5-10分钟。正因为如此,老师们才能真正把精力用于课程的设计而不是程序的编制上,才能使技术真正地促进和帮助教学工作,并进一步推动教育改革的发展。

由此可见,《几何画板》是一个“个性化”的面向学科的工具平台。这样的平台能帮助所有老师在教学中使用现代教育技术,也能帮助学生更好地把握学科的内在实质,培养他们的观察能力、问题解决能力,并发展思维能力。可以认为,类似《几何画板》这样的平台代表着教育类工具软件的一个发展方向。

小学几何画板课件 篇4

小学几何画板课件

教学目标

知识与技能:

1、熟悉几何画板的启动与关闭。

2、熟悉几何画板界面的组成以及工具的使用。

3、初步了解几何画板的功能和特点、能够画出简单的几何图形。

过程与方法目标:

1、通过对点、直线、圆规工具的使用,熟悉几何画板的基本作图的方法;

2、通过简单的构造工具的使用,画出平行四边形及三角形的“心”

情感态度与价值观:

1、通过简单的几何图形的制作,培养学生想象力、创造力。

2、培养学生积极探索、敢于实践、大胆创新的精神。

教学重点

1、几何画板界面的组成、各种工具的使用方法。

2、启动、保存几何画板文件、会画出简单的几何图形

教学难点 构造三角形的“心”。

教学方法 任务驱动 合作学习探究学习

教学教具 1、多媒体教学软件。

2、多媒体演示课件。

教学资源

1、参考资源:

2、硬件环境:多媒体电子教室

3、软件环境:联想传奇多媒体演示软件

Windows xp IE8.0 winrar 几何画板4.06

教材分析

几何画板就是一个用于辅助几何、代数、物理等学科学习的软件。利用它可以方便地把点、线、园等基本图形组合起来,构成复杂的几何图形、函数曲线等,用来帮助探究、发现学科规律,认识、理解抽象的原理,学习、掌握相关的知识和方法。

学情分析

本节课是几何画板的第一节课,在整个单元教学过程中所起的作用是打基础。俗话说:“良好的开端是成功的一半。”在本节课中,考虑到学生对新软件的接受情况,积极地创造条件,力求通过几个实例的演示,让学生亲身感受此软件所带来的帮助探究、发现几何规律,激发学生的学习兴趣,调动学生的学习积极性。通过制作与交流不仅能提高学生的操作技能,还能培养学生的想象力和创造力。

教学过程

一、创设情境,导入新课

教师活动:

扼要介绍几何画板学习背景,引出主题,展示课题

用几何画板打开已准备的素材点线面体。gsp文件,通过课例让学生感受几何中的'点、线、面、体。

设计意图:通过亲身感受激发学习兴趣。

二、展现目标,引入任务

教师活动:

教师讲解工具,画出三角形后,布置任务一:利用工具来作图。

学生活动:认识工具,完成“各显神通”中的第1、2题。

设计意图:通过简单练习激发学生动手实践兴趣。明确学习目标。

三、自主学习,任务探究

教师活动:

1.布置学习任务二:画平行四边形。

2.指导学生以小组为单位,进行探究式合作学习,鼓励完成快的同学当小组长,辅导操作慢的学生。

3.布置学习任务三

画三角形的“心”:重心、垂心、内心、外心。

学生活动:

1.结合教材完成任务二。在练习过程中,团结互助。

2.结合教材完成任务三。在学习过程中,收集出各组制作时出现的问题,合作探究,找到解决问题的方法,让学生在活动中,分享学习的快乐。

设计意图:通过大量实践练习,强化新知。

四、学习评价,归纳总结

教师活动:

1.利用教学电子平台展示学生的作品,师生进行多方位评价,通过归纳总结,让学生进一步强化本节课所学的内容。

2.启发引导学生完成教材“博弈舞台”中的任务。

3.提示学生将本节课的学习成果及学习感受记录到QQ空间或者博客中。

学生活动:

1.互相欣赏作品,自评、他评。

2.完成“博弈舞台”中任务。

3.记录学习成果及学习感受到QQ空间或博客中。

本节课的平行四边形及三角开的“心”,是构造作图的初步应用,引导学生可以课下探索更多的奥妙,以供下次课教学使用。

设计意图:通过总结评价,交流感受,反思巩固。

几何画板学习心得体会 篇5

《几何画板》是一款非常适合初中数学教学教学使用的计算机辅助教学软件,它有着强大的实验功能,通过数学实验,生动、直观。可以准确地反映教学内容的重点、难点,寓教于乐,为帮助教师讲授,学生理解和自我学习起到了很好的作用,不仅可以培养学生学习数学的兴趣,更能提高课堂教学效率,增加课堂容量。

通过本次研修,我学习了《几何画板》的使用,主要有以下体会:

1.几何作图功能

《几何画板》中具有我们过去画几何图形的铅笔、直尺和圆规,利用它能准确地绘制各种欧几里德几何图形,并且保持几何元素点、线、圆之间的几何关系,点、线、圆之间的几何关系我将其理解为“约束”,如:点在直线上,可以认为是直线是点的位置的约束;以某点为圆心,定直线为半径的圆,可认为是点和直线对圆的位置和大小的约束。不论你如何改变几何元素的位置,形状,这些约束关系是不会改变的,这对准确地表现作图过程的动态变化是非常有效的。

2.度量和函数计算功能

在《几何画板》中可以测量许多几何元素或图形的数值参数,如长度、角度、距离、面积、坐标等,例如我们可以验证在任意三角形中,正弦定理和余弦定理均成立。同时还可对这些测量数值进行数学运算和作图,较高的版本还加入了函数绘图功能(4.0以上的版本),在建立坐标系后,可绘制各种函数曲线,这些功能尤其适合于我们学习和探讨初等函数的图像与性质。

3.动态演示功能

《几何画板》的突出特点是能够动态地保持所给定的数学关系,在动态的数学图形变化中来观察、探索、发现恒定不变的数学规律,而且特别适合于学生自己动手制作演示,让学生自己动手主动参与学习。比如,用《几何画板》的画点(画线)工具画出一个三角形后,可以用鼠标任意拖动三角形的顶点和各边,就可以得到各种形状的三角形。

我们也可以让三个顶点沿不同方向运动,作一个动态的演示,这时就可以说:“这就表示一个任意三角形”。在此基础上,还可以做出它的三条中线,演示中不论三角形形状如何变化,其三条中线总是交于一点。正是由于《几何画板》能够很好地把数和形的潜在关系及其变化动态地显示出来,我们可以进行数学命题的实验和探索,通过观察到各种情况下的数量关系及其变化中,发现一些恒定不变的数学结论。

《几何画板》提供了一个十分理想的“做数学”的环境,完全可以利用它来进行数学实验。当我们拿到一道几何证明题时,你可以在几何画板画出图形,用测量的方法去验证一下;当你看到一个繁琐的函数时,你也可以画出图像,它可以帮助你一目了然地看出定义域,值域等。在1995年美国的两个初中二年级学生david goldeheim和dan litchfiled应用《几何画板》发现了又一个任意等分线段的方法;东北育才学校一名学生发现了广义蝴蝶定理(资料介绍)。例如我们在学习三角函数的图像与性质时,就可以根据几何画板的函数绘图功能画出各个三角函数的图像,这样我们就很容易结合函数图像得到函数及其图像的性质,如函数的定义域、值域、单调性、奇偶性,周期性等。

由于我们水平有限,在本学期的研究性学习中,利用几何画板还只能制作一些简单的数学课件,但我们通过感官直接获得了数学概念及数学结论。通过这种学习数学的新途径,我们开阔了视野,使我们可以主动参与发现数学问题的全过程,这样获取的数学知识必将是牢靠的。《几何画板》和数学教学的结合,必将很大程度地改变当前数学教学的现状。

在未来随着计算机日益走入人们的生活,计算机辅助教学将在数学教育领域,引起内容、方法、模式等一系列方面深刻的变革,大部分算术、代数的纸和笔的数学运算将为电子技术所替代。所以学校的数学教学应更重视培养学生对数学思想、方法及其应用的理解和掌握,重视现实问题的解决。数学教育则应“以学习者为中心”,留出更多的时间让学生去独立思考和理解,使学生学会提出问题并进行抽象概括,从而更深入地思考数学,应用数学。

《几何画板》有待于我们继续探索,只要你理解了其中道理,它不仅是数学学习的有力助手,还是模拟物理力学运动,构造化学分子模型的工具。只要把我们的创造力融学习中,《几何画板》定会淋漓尽致地展现它的风采!让我们好好地去运用它,你定会更进一层领略到数学学习的乐趣。

几何画板学习心得体会 篇6

进修学校短期培训了《几何画板》软件的使用后,收获很大。几何画板是一个在数学领域里进行创造、探索和分析等方面有着广泛应用的软件系统,对于数学教学应用的价值较大。利用几何画板,我们可以构造交互式的数学模型,可用于从事形与数的基础研究,构造高级的、动态的复杂系统的插图。

通过这一期的学习,我了解了几何画板的有关知识,掌握了几何画板的一些基础应用,如一些基本图形的构造、图形的平移与旋转、的绘制等。

通过几何画板演示,学生就能直接观 www.jiaoxuela.com 察到它们的运动路径,使抽象的知识变得更加形象和直观,学生接受起来就很容易了。同时,如果学好了几何画板,直接在课堂上操作,通过多媒体演示,既节省了时间,又提高了课堂效率。由此我体会到几何画板在数学教学中的用途如此之大,与日常教学息息相关。同时,通过学习,我体会到,在运用课件辅助教学时,不仅仅是去制作课件,在制作过程中,

要对这节课完全理解,从原理上明白这节课的实质内容,再细化到如何去制作,才能简单明了的理解这节课,是在制作过程中的关键点。

这个单元的单元练习需要一些图形,我用了刚刚学会的几何画板画插图,画出了标准而美观的图画。其实通过这么短的学习是很不够的,目前对几何画板的掌握还不太熟练,还需要不断的学习运用,我相信通过自己的努力一定可更加熟练的掌握它,几何画板对我的帮助也会越来越大。

总之,《几何画板》是一个适用于教学和学习的工具软件平台。目前,各学校的电教化设施不断改进,多媒体设备已普及到班级,网络已深入课堂和家庭生活,我相信几何画板会被越来越多的数学老师掌握,它会深入课堂,深入学生。

几何画板学习心得体会 篇7

通过最近的选修内容的学习,使我充分认识到几何画板这一软件在教学中的应用价值,促使我迫不及待的进行自学这一软件,并应用于自己的教学实践,让我受益匪浅。我了解了几何画板的有关知识,掌握了几何画板的一些基础应用,如一些基本图形的构造、图形的平移与旋转、函数图象的绘制等。

联想到我日常教学中,比如圆和圆的位置关系、直线和圆的位置关系、二次函数图像的变换、三角形的全等和相似、还有一些常见题目的动画演示等,这些知识若通过几何画板演示,学生就能直接观察到它们的运动路径,使抽象的知识变得更加形象和直观,学生接受起来就很容易了。

同时,如果学好了几何画板,直接在课堂上操作,通过多媒体演示,既节省了时间,又提高了课堂效率。由此我体会到几何画板在数学教学中的用途如此之大,与我日常教学息息相关,我一定要认认真真地把它学好。同时准备动员我校全体数学教师进一步开发研究几何画板的使用,提高其使用技能下面是我学习的几点体会。

一、学习从基本功能开始。

首先必需熟练运用好直线 ,线段,三角形,圆形,椭圆,垂线,二次函数等图形的绘画操作。在学习过程中,我也是遇到了不少的难题和困惑。我感觉单单用这个软件去制作课件并不难,难的是制作之前的构思巧妙与否,如何才能达到最佳效果。其次自己的自学能力毕竟有限,有许多地方都不明白,如果有老师给予一定的引导会更加好一些。

二、对几何画板的认识要提高。

问题与解决是数学的心脏。提出问题并解决问题是数学发展的原动力。由于各种原因,今天的初中数学教材中,难以体现出“问题与解决”的韵味,也没有机会让中学生接触丰富的数学遗产。问题提出的唐突化,过度的公式化、形式化及解题的模式化,使数学失去了原有的魅力。至使部分学生错误地认为数学只是符号与公式的组合,难以激发他们学习数学的热情和兴趣。而《几何画板》它的精髓是:动态地保持了几何图形中内在的、恒定不变的几何关系及几何规律。它的最大特点是:按给定的数学规律和关系来制作图形(或图象、表格),从中观察事物的现象,通过类比和分析提出问题,还可进行实验来验证问题的真与假,从而发现恒定不变的几何规律,以及十分丰富的数学图象的内在美、对称美。可以驾驶《几何画板》这一叶扁舟,在数学发展的历史长河中漫游,兴之所至,或探踪寻源,或荡舟而过。

将《几何画板》引入数学课堂教学,有助于提高课堂效率,增大知识的覆盖面。能给学生以更多的操作机会,培养学生的动手动脑的能力。有助于培养学生敏捷思维和观察问题、分析问题、解决问题的能力。利用现代化的教育手段进行快速训练,有助于个性特长的培养和发挥。《几何画板》的引入会给广大数学教师指出一条捷径,一条新路。它仅仅要求数学老师略懂计算机知识,就可使用《几何画板》,并能用它来编制课件,它是以数学基础为根本,以动态几何的特殊形式来表达设计者的思想。

《几何画板》为数学教师使用现代化教学媒体提供了方便。教师可以自己动手根据不同的教材,不同的生源素质开发出不同的教学辅助软件。在课堂教学中可以很自由地掌握教学节奏以及教学深度与广度。

《几何画板》能够突出要点,有助于学生理解概念掌握方法;画板动态反映了概念及过程,能有效地突破难点;画板强大的交互性,让学生有更多的参与机会;画板通过多媒体实验实现了对普通实验的扩充,并通过对真实情景的再现和模拟,培养学生的探索、创造能力;画板操作过程的可重复性,可以有效地克服学生的遗忘。

几何画板的探究使用过程还很漫长,我将一如既往的进一步研究它 ,使用它,直至能过熟练的应用于自己的教育教学之中。