首页 > 教学教案 > 教学设计 > 《比例的基本性质》教学设计优秀8篇正文

《《比例的基本性质》教学设计优秀8篇》

时间:

作为一无名无私奉献的教育工作者,总不可避免地需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。优秀的教学设计都具备一些什么特点呢?读书之法,在循序而渐进,熟读而精思,本文是勤劳的编辑给大伙儿整编的《比例的基本性质》教学设计优秀8篇,欢迎阅读。

比例的基本性质教学设计 篇1

【教材分析】

《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材直接以比例“2.4:1.6=60:40”教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:

“2.4×40○1.6×60”。在此基础上,发现规律,揭示比例的基本性质。“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。个人认为这样的材料呈现方式至少存在两个弊端:

(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;

(2)没有给学生想想的猜想和验证的空间。

【教学目标】

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

【教学重点】探索并掌握比例的基本性质。

【教学难点】判断两个比能否组成比例,根据乘法等式写出正确的比例。

【教学设想】:

1、教学情境的呈现

创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。

教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是(),两个內项的积是(),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。个人认为这样的情境太直接,牵住学生的思维走,没有提供可探究的空间。为此,我简单创设了这样一个情境:老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?这个问题简单却开放,答案不唯一,为学生的思考打开了空间,同时学生可以通过求比值的方法解决:先填进一个数,然后就出比值,再确定另一个数。只要老师有意识的把学生的回答有序板书,可以达到引导有序思考的作用。

2、教学方式的选择

教育的真谛应该是促进人的发展,人的`发展当然需要积累一定量的基础知识,更重要的是思维水平的提升和分析问题、解决问题能力的发展。我们的课堂教学要引领学生掌握知识,更要侧重引领学生经历知识的形成过程,让学生在探索知识形成过程的学习中,不断拓展思维的宽度和增加思维的厚度。

比例的基本性质本身并没有难度,难在通过观察、猜测、验证、归纳等数学活动探索“在比例中,两个外项的积等于两个內项的积”这个结论的形成过程。我想,这个探究过程应该就是一个合作、探究学习的过程吧。只有当学生经历了这个探究式学习过程,才有可能真正体验思考与合作的成就感,才能真正激发学生对数学的学习兴趣。

3、练习的设计

(1)判断下面哪组中的两个比可以组成比例。旨在巩固对比例基本性质的掌握,应用比例的基本性质解决问题,渗透假设、验证的解决问题方法,假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。补问引出求比值的方法判断两个比能否组成比例,追问引领学生对求比值判断两个比能否组成比例和用比例的基本性质判断两个比能否组成比例的方法进行比较优化,凸显了比例基本性质的应用价值。

(2)根据乘法等式“2×9=3×6”写比例。既是对比例基本性质的逆用,又旨在渗透有序思考的解决问题策略和方法。

(3)如果a×2=b×4,则a:b=():(),旨在将比例的基本性质逆用推广到一般。追问:如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?旨在激发学生的思维矛盾,引领学生打破思维定势,体验变与不变的思想。那么a、b还可能是多少?你发现了什么?旨在引导学生经历一个列举、归纳的过程,提升思维水平。

(4)猜猜我是谁?6:()=5:4,旨在应用比例的基本性质时,渗透方程思想,为解比例的学生作铺垫。

【教学预设】

一、认识比例各部分的名称

1、呈现:4:5和8:10

(1)认识吗?叫什么?

(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)

(3)求比值,判断两个比能否组成比例。

2、介绍比例各部分的名称

4:5=8:10中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4:=:5(2)=

二、探究比例的基本性质

1、猜数

呈现比例“12∶□=□∶2”。

(1)想一想,这两个内项可能是哪两个数?如1和24,2和12,……

(2)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积”;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法

(2)你觉得应该怎样举例呢?

(3)合作要求

1)前后4个同学为一个小组;

2)每个同学写出一个比例,小组内交换验证。

3)通过举例验证,你们能得出什么结论?

4、小结

(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?

《比例的基本性质》教学设计 篇2

教学内容:比例的基本性质

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:比例的基本质性。

教学难点:发现并概括出比例的基本质性。

教学过程:

一、旧知铺垫

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

2.4:1.6和60:40

二、探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6=60:40

内项

外项

(2)学生认一认,说一说比例中的外项和内项。

如::=:

外内内外

项项项项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。

板书:两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

外项的积等于内项的积。

(4)举例说明,检验发现。

如::0.5=1.2:

两个外项的积是×=0.6

两个内项的积是0.5×1.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=

2.4×40=1.6×60

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

3.填一填。

(1)=

()×()=()×()

(2)0.8:1.2=4:6

()×()=()×()

(3)4×5=2×10

4:()=():()

=

4.做一做。

完成课文中的“做一做”。

5.课堂小结

(1)说一说比例的基本性质。

(2)你可以用什么方法来判断两个比能否组成比例?

三、作业

完成课文练习六第4~6题。

课后记:

《比例的基本性质》教学设计 篇3

一、教学目标

知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

二、教学重点难点

重点: 理解比例的意义和基本性质。

难点:判断两个比是否成比例。

三、教学过程设计

(一)创设情境,提出问题

1. 复习导入:

(1)什么叫做比?

两个数相除又叫做两个数的比。

(2)什么叫做比值?

比的前项除以比的后项所得商,叫做比值。

(3)求下面各比的比值:

12:16= 4、5:2、7= 10:6=

谈话:今天我们要学的知识也和比有着密切的关系。

2、创设情境,提出问题。

谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

这是它两天的运输情况:

一辆货车运输大麦芽情况

第一天 第二天

运输次数 2 4

运输量(吨) 16 32

根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

谈话:谁来交流?跟大家说一下你的问题是什么?

学生可能出现以下的问题:

货车第一天的运输量与运输次数的比是多少? (16 : 2)

货车第二天的运输量与运输次数的比是多少?(32 :4)

货车第二天的运输量与第一天运输量的比是多少?(32 :16)

(师根据学生的回答,将答案一一贴或写于黑板)

2 :16; 4 :32; 16 :2; 32 :4;

16 :32; 2 :4; 32 :16; 4 :2。

1、认识比例及各部分名称。

谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

思考:这个比值所表示的实际意义是什么?(每次的运输量)

既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

学生用等号连接,并请学生把这个式子读一下。

试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

2、比和比例有什么区别?

4︰6

比例

2︰3=4︰6

3.判断下面两个比能否组成比例?

6∶9 和 9∶12

总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

5、学生先独立思考,再小组交流,探究规律。

出示研究方案:

①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

③通过以上研究,你发现了什么?

6、全班交流。

(1)哪个小组愿意将你们的发现与大家分享?

(2)还有其他发现吗?

(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

7、验证发现,共享成功。

师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

10、比例的基本性质的应用:

应用比例的基本性质,判断下面两个比能不能组成比例。

6∶3 和 8∶5

方法:a、先假设这两个比能组成比例

b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

c、根据比例的基本性质判断组成的比例是否正确。

(二)自主练习,拓展提升

1、判断下面每组中两个比能否组成比例?

1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

让学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

2、连线:自主练习第3题。

3、填空:自主练习第6题。

4、自主练习第10题:

2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

2、3、4 和 6

因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

练习时,给学生充足的时间让学生独立完成,然后交流沟通。

(三)回顾总结

在这节课中你又有什么新的收获?

小学六年级数学《比例的基本性质》优秀教案 篇4

【学习内容】

《义务教育课程标准实验教科书 数学》(人教版)六年级下册第41页。

【教材分析】

“比例的基本性质”是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。

【设计理念】

数学学习是一个学生自发探究的过程,因此,要让学生经历“自主发现问题——自主提出猜想——自主实施验证——自主归纳结论”的过程掌握比例的基本性质;本课的设计旨在为学生的探究学习创设简洁、开放的情境,让学生充分经历探究过程,学会探索方法,体验数学思想,发展数学素养。

【学习目标】

1.进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

4 能根据乘法等式写出正确的比例。

【评价设计】

1、通过练习1检测目标1的达成;

2、通过练习1检测目标2的达成;

3、通过练习1、2、4检测目标3的达成。

4、通过练习3检测目标4的达成。

【学习重点】探索并掌握比例的基本性质。

【学习难点】能运用比例的基本性质判断两个比能否组成比例。

【教学准备】课件

【学习过程】

一、认识比例各部分的名称

1、复习

(1)什么叫做比例?什么样的两个比才能成比例?

(2)应用比例的意义,判断下面的比能否组成比例。

6:15和8:20 0.5:0.4和2:25

2、介绍比例各部分的名称

4:5=8:10 中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4: 1 = 7 :5

二、探究比例的基本性质

1、猜数

(1)老师这里也有一个比例“12∶□=□∶2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,……)

(2)追问:正确吗?为什么?(求比值判断)

(3)还有不同答案吗?

(4)你能举出项不是整数的例子吗?

(5)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证)

(2)应该怎样举例呢?你有什么好方法?

示范:①任意写一个简单的比;②求出比值;③根据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。

(3)合作要求

①前后4个同学为一个小组;

②每个同学写出一个比例,小组内交换验证。

③通过举例验证,你们能得出什么结论?

4、归纳

我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)

5、完善

(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)

(2)老师这里也有一个比例0:3=0:4,可以吗?3:0=4:0呢?

(3)比例中两个比的后项都不能为0。

6、如果比例写成分数形式,这怎么相乘?(交叉相乘)

三、巩固练习

1、判断下面哪组中的两个比可以组成比例。

示范:6:3和8:5

先让学生尝试判断,再交流,明确思考方法。

应用比例的基本性质判断

(2)还可以用什么方法来判断?用求比值的方法判断能否组成比例可以吗?(将学生分两大组,分别用上述两种方法进行判断)

(3)这两种方法,你更喜欢哪种?为什么?

2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积,你会写比例吗?

某同学根据“2×9=3×6”写出了比例,猜猜他可能是怎么写得?请在练习本上写一写。

追问:你为什么写得那么块?有什么窍门吗?(强调有序思考)

补问:根据这个乘法等式,一共可以写多少个比例?

3、如果a×2=b×4,则a:b=( ):( );

如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?

那么a、b还可能是多少?你发现了什么?

4、猜猜我是谁?

6:( )=5: 4

延伸:如果把 “( )”改为“x”就是我们下节课要学习的知识:解比例。

四、分享收获 畅谈感想

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例?

《比例的基本性质》教学设计 篇5

教学内容:

课本第1~2页例1、例2,练习一第1、2、3题,比例的意义和基本性质。

教学目的:

1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。

2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。

教学重点:

理解比例的意义和基本性质。

教学难点:

应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

教学关键:

观察众多的实例,概括出比例意义的过程;找出在比例里两个内项的积与两个外项的积相等的规律。

教具:投影片、小黑板

教学过程:

一、谈话导入,创设情境

(一)教师出示投影,结合画面谈话引入。

师:同学们看了我们祖国各地的风景图片,美吗?我们的祖国方圆xxx万平方公里,幅员之辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

教师板书课题:比例的意义和基本性质。

(二)让学生完成教材第1页复习题,根据学生回答教师板书:10:6=4.5:2.7。

二、自主探究,学习新知

(一)教学比例的意义

1.合作互动,探求共性。

先让学生在小组活动中完成“活动内容1”。

活动内容1:

(1)根据表中给出的数量写有意义的比。

(2)观察写出的比,哪些比能用等号连接,为什么?

(3)根据比与分数的关系,这样的式子还可以怎样写?

然后让学生汇报活动情况,小学数学教案《比例的意义和基本性质》。结合学生回答,教师任意板书几个比例式。(如80:2=200:5, = ,2:5=80:200,5:200=2:80……)并指出这些式子就是比例。

2.抽象概括,及时巩固。

(l)教师指导学生观察以上比例式,概括出共性。

(2)让学生用自己的语言描述比例的意义。并板书:表示两个比相等的式子叫做比例。

(3)完成第2页“做一做”,并说明理由。

(4)让学生自己举出两个比例,并说明理由。

(二)教学比例的基本性质。

1.认识比例各部分名称。

(l)让学生查阅教材,认识比例各部分的名称。根据学生汇报,教师板书:“内项”、“外项”。

(2)让学生观察自己刚才举的比例,找出它的内项、外项。

(3)引导学生观察把比例写成分数形式,比例的外项和内项的位置又是怎样的?教师板书:

2.引导学生发现比例的基本性质。

(1)让学生小组活动完成以下活动内容2:

活动内容2:

①观察比例的'两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

②如果把比例写成分数形式,是否也有如上面发现的规律?

③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

④通过以上研究,你发现了什么?

(2)学生汇报活动情况,认识到任何比例的两个内项的积与两个外项的积都存在相等的关系。

(3)指导学生概括出比例的基本性质,并完成板书。

三、分层练习,辨析理解

1.完成练习一第1题区别比与比例。

2.先让学生解答第2页“做一做”第l题,然后引导学生小结:判断两个比能否组成比例,不仅可以应用比例的意义,而且可以应用比例的基本性质。

3.完成练习一第2题。

4.下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。

2、3、4和6

四、全课总结

先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

五、课堂作业

练习一第3题。

小学六年级数学《比例的基本性质》教案 篇6

教材分析

本课教学内容是课程标准人教版六年级32、33页的“比例的基本性质”。这部分内容是在学生初步理解比例意义的基础上教学的,通过教学,使学生认识比例的“项”以及“内项”和“外项”,理解并掌握比例的基本性质;让学生在尝试探索的过程中进一步培养比较、概括的能力,发展符号意识。

学情分析

本班学生基础能力中等,平时上课发言的学生不是很多,对于这个比例的基本性质的学习是第一次的接触,但本节课难度不是很大,学生领会的能力相信还是可以的。

教学目标

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

教学重点和难点

理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质

教学过程

(一)、复习导入

1、我们已经认识了比例,谁能说一下什么叫比例?

2、应用比例的意义判断下面的比能否组成比例。

0.5:0.25和0.2:0.4∶和12∶91∶5和0.8∶4;

7∶4和5∶380∶2和200∶5

(一是看两个比的比值是否相同,二是看他们化成最简比是否相同)

3、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例)

板书:比例的基本性质

(二)、探究新知

1、教学比例各部分的名称.

同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第34页看看什么叫比例的项、外项和内项。

(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。学生回答的同时,

板书:

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6=60:40

外项内项学生认一认,说一说比例中的外项和内项。

如:

2、教学比例的基本性质。

(1)教师:比例有什么性质呢?现在我们就来研究。

(板书:比例的基本性质)

学生分别计算出这个比例中两个内项的积和两个外项的积。

教师板书:

两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

(2)教师:你发现了什么,

两个外项的积等于两个内项的积

是不是所有的比例都存在这样的特点呢?

学生分组计算前面判断过的比例。

(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)

(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。教师说明这叫做比例的基本性质。

(5)如果把比例写成分数形式,比例的基本性质又是怎样的呢?

指名学生改写2.4:1.6=60:40(=)

这个比例的外项是哪两个数呢?内项呢?

当比例写成分数的。形式,等号两端的分子和分母分别交叉相乘的积

怎么样?(边问边画出交叉线)

(6)强调:如果把比例写成分数的形式,比例的基本性质就是等号两端分子和分母分别交叉相乘的积相等。以前我们是通过计算它们的比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。

(三)、课堂作业设计

1、应用比例的基本性质判断3:4和6:8能不能组成比例。

2、先应用比例的意义,再用比例的基本性质来判断下面哪组中的两个比可以组成比例。

6:9和9:12

0.5:0.2和:

1.4:2和7:10

(四)、拓展练习

下面的四个数可以组成比例吗?把组成的比例写下来。(能写成几组就写几组)

5、8、15和24

通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?通过以上学习,大家一定进一步了解比例了吧?

小学六年级数学《比例的基本性质》优秀教案 篇7

【教学内容】

比例的基本性质(教材第41页内容)。

【教学目标】

1、使学生理解比例的基本性质。

2、提高学生观察、计算、发现、验证和总结的能力。

3、在总结比例的基本性质的过程中,使学生感受到探索数学问题的乐趣。

【重点难点】

应用比例的基本性质判断两个比能否组成比例,并正确地组成比例。

【教学准备】

投影仪。

【复习导入】

1、教师提问:什么叫做比例?

2、应用比例的意义,判断哪两个比可以组成比例。

6∶3和8∶50.2∶2.5和4∶50

教师:同学们能正确判断两个比能不能组成比例了,那么比例各部分的名称是什么?

【新课讲授】

1、教学比例各部分的名称。

引导学生自学教材第41页第1行、第2行的内容。

教师板书:2.4∶1.6=60∶40

指名让学生指出板书的比例的外项、内项。随着学生的回答教师接着板书:

学生认一认,说一说比例中的外项和内项。

2、探究比例的基本性质。

教师:我们知道了比例的各部分的名称,那么比例有什么性质呢?现在我们就来探究一下。

教师板书:比例的基本性质。

组织学生观察组成比例的两个内项和两个外项,并探究它们的关系。

学生小组内交流。指名汇报,学生可能会说:两个外项的积是2.4×40=96,两个内项的积是1.6×60=96,两个内项的积等于两个外项的积。

验证其他的比例有没有这个规律,举例说明,检验发现。如:∶0.5=1.2∶,两个外项的积是×=0.6,两个内项的积是0.5×1.2=0.6。外项的积等于内项的积。

如果把比例改成分数形式呢?如:=,3×15=5×9。等号两边的分子和分母分别交叉相乘,所得的积相等。

教师:这个规律叫做比例的基本性质。引导学生说一说,比例的基本性质是什么?组织学生小组交流、汇报。教师补充:在比例里,两个外项之积等于两个内项之积,这叫做比例的基本性质。学生齐读两遍。

3、应用比例的基本性质,判断哪两个比可以组成比例。

6∶3和8∶50.2∶2.5和4∶50

组织学生在小组中互相交流,然后指名汇报。

4、教师:到现在为止,我们学习了判断两个比能否组成比例有几种方法?

学生讨论交流后,指名回答。

教师小结:两种方法:看两个比的比值是否相等;两个比的两个外项之积是否等于两个比的内项之积。

【课堂作业】

教材第41页“做一做”。组织学生独立思考,指名说一说,全班集体订正。

【课堂小结】

通过这节课的学习,你有哪些收获?

【课后作业】

1、教材第43页练习八第5题。

2、完成练习册中本课时的练习。

答案:(1)不可以组成比例;(2)可以组成比例;(3)可以组成比例;(4)不可以组成比例

第2课时比例的基本性质

在比例里,两个外项之积等于两个内项之积。这叫做比例的基本性质。

《比例的基本性质》教学设计 篇8

教材分析:

比例的知识是人教版第三单元第二课时的内容,也是本单元的基础知识。在日常生活中有广泛的应用,这部分知识是在学习了比的知识和除法、分数、比例的意义基础上教学的。本节课内容主要属于概念教学,是解比例的基础,和进行正、反比例教学的关键,是利用比例知识解决实际问题的先决条件,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

学情分析:

这部分内容是在学生初步理解比例意义的基础上教学的。通过教学,使学生认识比例的内项和外项,探索并掌握比例的基本性质,学会应用比例的基本性质解比例。六年级学生已初步形成了一定的观察、探索、归纳的能力。本班学生对比例的意义以及比例的性质已经有了一定的知识基础,同时学生对这一知识点的学习兴趣比较高,因此可以组织学生自主学习,提高学生学习的主动性。但又个别学生理解能力和数学基础知识比较差,因此在教学中要关注这部分人群。

教学目标:

1、 使学生进一步理解比例的意义,懂得比例各部分名称。理解并掌握比例的基本性质。

2、 能够运用比例的意义和比例的性质判断两个比能否组成比例,并会组比例。

3、 能够运用所学知识解决实际问题,提高解决问题的能力。

4、 在学习中,引导学生通过观察、比较、分析、计算、交流探索新知。

教学重难点:

掌握比例的基本性质,发现并概括出比例的基本性质。引导观察比例中的内、外项的关系。

教学过程:

一、 旧知铺垫

1、 什么叫做比例?

2、 应用比例的意义判断下面的比能否组成比例,并说出判断方法。

1/3∶1/4和12∶9; 1∶5和0.8∶4;

7∶4和5∶3; 80∶2和200∶5

根据学生的判断说出组成比例的方法。

3、 通过师生能否组成比例的比赛诱发学生的思考:还能有什么方法判断能否组成比例?

(设计意图:教师教学应该以学生的认知发展水平和已有的经验为基础,并激发学生求知的欲望。)

二、 探索新知:

1、 比例各部分的名称。

① 提问:我们每个人都名字,那我们的比例有没有名称呢?

② 自学课本,全部齐读。

(培养阅读文本的能力,加深对数学概念的文本理解。)

③ 出示各种不同的比例,让学生说出比例各部分的名称。并检查学生的自学情况,及时给予纠正。(学生行为:大部分都能说出比例的各部分名称,但个别的还是存在问题。)

(设计意图:检查学生的自学情况,并给予及时纠正)

2、 比例的基本性质

① 通过观察、分析、计算等方法,学生独立探索其中的规律。

② 与同桌互相交流自己的发现。

③ 汇报自己的发现,全班交流总结。

④ 举例说明,检验发现。

如:4∕5:0.5=1.2:3∕4 → 4∕5×3∕4=0.5×1.2

2.4∕1.6=60∕40 → 2.4×40=1.6×60

学生行为:学生认真观察、计算,并能够探索,学习的积极性较高。

设计意图:这环节的学习能够充分的体现学生学习的主动性,让学生在观察、计算中找到规律,并与他人分享,培养合作意识。

三、总结

在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。全部齐读 明确和牢记比例的基本性质。

四、巩固练习

在( )里填上合适的数。

5:3=( ):4 12:( )=( ):5

1、做一做:完成课文中的“做一做”。

2、课堂小结。

3、完成课文练习4—6题。

学生行为:独立完成练习 设计意图:巩固和检验学习的成果

板书设计

80 : 2 = 200 : 5

↓ ↓ ↓ ↓

外项 内项 内项 外项

4∕5:0.5=1.2:3∕4 → 4∕5×3∕4=0.5×1.2

2.4∕1.6=60∕40 → 2.4×40=1.6×60

在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

学习活动评价设计

评价1、在本节课的教学中我采用了师评、互评相结合的评价方式,我注重对学生的自学能力,语言表达能力以及学习热情能力的评价,我想以此来发挥评价的激励作用。

评价2、这个环节主要是再次把学习的主权交给学生,让学生在回忆过程中更清楚地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补助,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。让学生在评价中对自己充满信心,是评价成他们发展的动力。

教学反思

这节课在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而且在知识点的获取时,让学生自主观察发现,分析比较,概括出比例的基本性质,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我总觉得:学生掌握得不是很好,尤其是根据比例的基本性质写出比例,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。