首页 > 教学教案 > 教学设计 > 乘法分配律教学设计最新9篇正文

《乘法分配律教学设计最新9篇》

时间:

作为一名老师,时常需要编写教学设计,借助教学设计可以提高教学效率和教学质量。那么你有了解过教学设计吗?读书是学习,摘抄是整理,写作是创造,这里是敬业的小编为家人们收集的乘法分配律教学设计最新9篇,仅供借鉴,希望对大家有所启发。

乘法分配律教学设计 篇1

【教学内容】

《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。

【教材简析】

本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。

【教学目标】

1.结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。

【教学重点】

让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。

【教学难点】

清楚地表述自己发现的规律,理解及应用乘法分配律。

【教学过程】

一、创设情境,感知规律

1.提出问题,列出算式。

出示情境图

谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?

信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。

问题预设:济青高速公路全长约多少千米?(板书)

谈话:请你试着用两种方法在答题纸上解答。

生独立解答。

预设:

2.结合情境,感知规律。

提出要求:结合线段图说说算式每一步的含义。

回答预设:①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。

②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。

【设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。】

二、研究素材,猜测规律

教师引导学生观察算式谈发现。

预设发现:两个算式结果相等。可以用等号连接。

教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。

预设区别:①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。

②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。

谈话:根据前面运算律的学习,你有什么想法?

预设回答:这可能又是一个规律。

【设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。】

三、讨论交流,验证规律

1.举例验证规律。

谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。

学生独立计算举例。

指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。

谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的`等式是否成立。

预设举例:(25+35)×4=25×4+35×4

(60+50)×2=60×2+50×2

(65+55)×42=65×42+55×42

……

教师引导学生发现像这样的例子举不完,可以用省略号表示。

2.观察几组等式的相同点。

教师引导学生观察这几组等式的左边和右边分别有什么相同点。

预设回答:①这几组等式的左边都是两个数的和乘一个数。

②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。

3.总结规律。

教师引导学生用自己的话说说这个规律。

谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。

教师出示乘法分配律。

谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。

生按要求说什么是乘法分配律。

谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?

预设回答:可以用字母表示。

教师要求学生在答题纸上试着用字母abc来表示乘法分配律。

学生试着在答题纸上写字母表达式。

指生板演(a+b)c=ac+bc。

谈话:对于乘法分配律用字母来表示,感觉怎么样?

预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!

教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。

【设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。】

四、巩固拓展,应用规律

1.连一连。

2.在□里填上合适的数或字母。

3.火眼金睛辨对错。

吴正宪《乘法分配律》的教学设计 篇2

教学目标:

1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力,《乘法分配律》教学设计。

2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。

3、能够运用乘法的分配律进行简便计算。

重点、难点:

重点:学生参与推导乘法分配律的过程。

难点:乘法分配律的推理及运用。

教学过程:

一、比赛激趣,提出猜想。

(1)同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做A组的题,右边的两组做B组的题,看谁做的又对又快,开始)

9×(37+63)9×37+9×63

(2)评出胜负。(做完的同学请举手,汇报计算过程。可以看出左边的同学做得比较快,(问同学)你们有什么意见吗?)刚才的计算中你发现这两道题有什么关系吗?

教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。

引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:9×(37+63)=9×37+9×63

(3)将学生的发现以他(她)的名字命名为“xx猜想”。

【设计意图:在课的开始,组织数学热身赛能调动学生的学习积极性。】

二、引导探究,发现规律。

1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)昨天,老师去超市里买东西,看到下面这些物品。橙子每箱28元,苹果每箱22元。如果橙子和苹果各买3箱,一共需要多少钱?

(1)全班同学独立完成。

(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)

还有不一样的方法吗?谁来说说看?(生回答,师板书)

算式(28+22)×3和28×3+22×3的每一步各表示什么?谁能说给大家听听?

(3)观察这两个算式,你有什么发现?

引导学生比较两个算式异同点,并指名学生说一说自己

生:这两个算式的得数是一样的。

师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。

生:等于号

师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,所以(35+25)×3=35×3+25×3

师:再和前面的一组式子一起观察,

9×(37+63)=9×37+9×63

(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)

2、举例验证,进一步感受

认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)

(1)验证方法:要求每人出两组算式,数字随意举例,可以使用计算器进行计算,验证你举的例子是否相等,教案《《乘法分配律》教学设计》。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)

(2)学生回报:谁来说一说自己举的例子。

(3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)

(4)轻声读这些等式,你发现了什么?

3、归纳总结,概括规律。

(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

(2)从刚才的举例过程中,你能发现乘法运算中的规律吗?

学生回报。

(电脑出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)

同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)

(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?

结合学生回答,教师板书:(a+b)×c=a×c+b×c

齐声读两遍。

(4)对于乘法分配律,用字母来表示,感觉怎样。

引导学生发现:字母表示的式子简洁、明了,这就体现了数学的美。

三、加强应用、深化理解

1、瞻前顾后填一填。

(10+7)×6=□×6+□×6

8×(125+9)=8×□+8×□

7×48+7×52=□×(□+□)

2、火眼金睛看一看:

判断下面算式是否正确?并说明理由?

56×(19+28)=56×19+28()

32×(7×3)=32×7+32×3()

25×12+12×75=12×(25+75)()

25×99+25=(99+1)×25()

3、利用乘法分配律,计算下列各题。(80+4)×2534×72+34×28师小结:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

4、找朋友

(10+6)×410×4+610×4+6×4

5×(7+9)5×7+5×95×7×9

3×25+7×253+7×25(3+7)×25

5、对口令

师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。

6、脑筋急转弯。

猜一猜,等号后边是三个什么字?

木×(1+3+2)=?

四、总结:

1、回忆一下,这节课你学会了什么?

2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?同学们课后交流一下,下节数学课我们再继续研究。

乘法分配律教学设计 篇3

教学内容

义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律

教材分析

本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。

学情分析

本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。

教学目标

1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。

2、使学生感受数学与现实生活的联系,初步感受运用乘法分配律能进行一些简便运算。

3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。

教学重点

理解乘法分配律的意义。

教学难点

发现与归纳乘法分配律。

教学准备

课件习题卡

教学过程

一、结合实事创设情景,引入新课

1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!

2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?

3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?

二、合作交流,探索发现新知

1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知——乘法分配律。

板书:乘法分配律

2、发现和归纳乘法分配律

(1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的。发现和同桌说一说好吗?

(2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?

(3)生举例并展示,共同验证并读一读式子。

(3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?

(4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书P36读一读。

3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。

三、小结

同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?

四、分层练习,逐级达标

1、填一填:习题卡第一题

巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。

学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。

2、看一看:习题卡第二题

3、应用:请生完成书P38第7题。使学生感受学习乘法分配律的用处是使计算简便。

五、回顾课程,进行总结

同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?

板书设计

乘法分配律

(5+10)x24=5x24+10x24

(a+b)xc=axc+bxc

25x(4+2)=25x4+25x2

ax(b+c)=axb+axc

习题卡

填一填

1、(32+25)x4=32x()+25x()

2、(64+12)x5=()x5+()x5

3、(7+6)x8=7868

4、(43+25)x2=

5、3x6+7x6=(+)

看一看

下面哪个算式是正确的?正确的画“√”,错误的画“x”

(19+28)x56=19x56+28

(7x3)x32=7x32+3x32

64x64+36x64=(64+36)x64

《乘法分配律》优秀教学设计 篇4

教学内容

苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

教学目标

1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。

2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学过程

一、创设情境,谈话导入

谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)

二、自主探究,合作交流

1、交流算法,初步感知。

提问:从图中你获得了哪些信息?

再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。

反馈:你是怎样解决这一问题的?为什么这样列式?

组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。

谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

学生在自己的本子上写,教师板书,让学生读一读。

谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)

提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

根据学生回答,列出算式:32×5+45×5和(32+45)×5。

再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

启发:比较这两个等式,它们有什么相同的地方?

2、深入体验,丰富感知。

引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?

分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?

要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。

学生举例并组织交流。

3、揭示规律。

提问:像这样的等式,写得完吗?

谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]

三、实践运用,巩固内化

1、“想想做做”第1题。

谈话:下面我们利用乘法分配律解决一些简单的问题。

出示“想想做做”第1题,让学生在书上填一填。

学生完成后,用课件反馈。

2、“想想做做”第2题。

你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。

回答第2小题时,让学生说一说理由。

3、“想想做做”第3题。(略)

四、梳理知识,反思总结

提问:今天这节课,你有什么收获?有什么感受想对大家说?

五、布置作业

“想想做做”第4、5题。

说明

数学教学是数学活动的教学。本节课注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,先组织学生通过用两种不同的方法解决一些实际问题,在两个不同的算式之间建立起联系,得到了两个等式,并比较这两个等式有什么相同的地方,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,为学生提供符合乘法分配律和不符合乘法分配律的五组算式,引导学生在小组辨析与争论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。

最新《乘法分配律》教学设计 篇5

教学目标:

1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。

2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。

3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

教学重点:

理解和掌握乘法分配律的推导过程。

教学难点:

理解和掌握乘法分配律的推导过程。

教学准备:

课件,卡片(课前发给学生)

教学过程:

一、拟定自学提纲

自主预习

1.创设情境:(多媒体出示24页情境图)

教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?

(学生可能提出济青高速公路全长大约多少千米?

相遇时大巴车比中巴车多行多少千米?)

(教师把这两个问题板书在黑板上。)

教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。

2.出示学习目标:这节课的学习目标是:(多媒体出示)

(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。

(2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。

教师引导:有信心达到这两个目标吗?(有!)

老师的指导会对你们的学习有很大的帮助,请看自学指导:

3.出示自学指导(认真看课本第24页到25页第二个红点前的内容,重点看图上同学的对话。思考:

(1)如何求济青公路的全长,有几种解法,如何列式计算。

(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?

(3)什么叫乘法分配律,如何用字母表示?

5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)

4.学生按自学指导自学,教师巡视,关注学困生。

二、汇报交流评价质疑

调查学情:看完的同学请举手!看会的请放下。

1.小组交流:

学习中你有哪些收获、困惑和体会,请在小组内交流一下。

2.班内汇报:

师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。

课堂生成预设:

(1)济青高速公路全长大约多少千米?

教师追问:第一种算法是先算什么,再算什么?第二种算法呢?

预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;

预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)

(2)相遇时大巴车比中巴车多行多少千米?

(110-90)×2110×2-90×2

=20×2=220-180

=40(千米)=40(千米)

教师追问:你能说说两种算式的意思么?

预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;

预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。

(3)观察、比较两种算法的过程和结果,你有什么发现?

预设一:第一种算法是先加(或减)再乘;

预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。

(4)据此,你有什么猜想?

预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

(5)怎样验证你的猜想呢?

(师用线段图帮助学生理清思路)

学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。

通过观察,有何发现?引导学生回答:

举例验证:(125+12)×8=125×8+12×8

(40-4)×25=40×25-4×25

(8+16)×125=8×125+16×125

(80-8)×125=80×125-8×125

…………

(6)通过验证,你能得出什么结论?

结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。

(板书课题)你会用字母表示这个规律吗?

(用字母表示:(a±b)c=ac±bc)

三、抽象概括总结提升

1.通过以上研究,你得到了什么结论?

课堂预设:

预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。

预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。

预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

预设四:这个规律叫乘法分配律,可以用字母表示为:

(a±b)c=ac±bc

2.如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的猜想?

课堂预设:

举例验证:(2+3+5)×4=2×4+3×4+5×4

(1000+100+10)×3=1000×3+100×3+10×3

…………

教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。

设计意图:将乘法分配律适当拓展

3.在记忆这个规律时,应该注意什么?

课堂预设:

预设一:括号里的每一个数都要乘括号外的数。

预设二:括号里的数必须是相加或相减,如果是相乘就不是乘法分配律。

预设三:这个规律还可以倒过来看。

教师追问:怎样倒过来看?

预设:几个数都乘同一个数,再相加或相减,可以先把它们相加或相减,所得的和或差再乘这个数,结果不变。

四、巩固应用拓展提高

教师引导:怎么样?学会了吗?想不想挑战一下自己?

1.考一考(课件出示第26页第2题)

(1)指4名学困生板演,其余同做在练习本上。

(2)展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。

课堂预设:(以第一题为例)

(80+70)×5(80+70)×5

=80×70+70×5=80×5+70×5

2.议一议

(1)�

(3)用同样的方法评议其余3题。

(4)同桌互改

(5)统计错题情况,让小组代表说说错误原因。

(6)学生各自订正错题。

3.全课小结:你在本节课中有什么收获?

课堂预设:

预设一:我知道了什么是乘法分配律。

预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。

预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!

五、当堂训练

1.出示课本第26页第3题

2.《新课堂》第17到第19页信息窗2第1课时内容。

同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。

乘法分配律教学设计 篇6

设计思路:

本节课从学生的生活经验出发,让学生在真实的情境中认识乘法分配律感受到数学知识的真实,数学知识就在自己的身边,有助于培养学生用数学的思维方法观察周围事物,思考问题的良好习惯。本节课,在整个探究发现乘法分配律的过程中,我没有把知识规律直接展示给学生,而是让学生积极地动手实践、自主探索及与同伴进行交流,亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习科学探究的方法,数学思维的能力得到了发展。

一、教学内容

义务教育教科书(人教版新教材)小学数学四年级下册第三单元第二节内容乘法运算定律之乘法分配律(第26-28页内容)。

二、教材内容分析:

《乘法分配律》是新人教版小学数学四年级下册,第26-28页内容。本课的教学内容是在学生已经掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的乘法分配律,是本单元的教学重点,也是本节课内容的难点。乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要

三、学生情况分析:

今天我们学习的乘法分配律是在已经掌握了乘法交换律、结合律的基础上进行教学,运用这些定律使一些运算得到简便。四年级学生已有一定的观察、比较、分析、理解的能力,但运用能力不够,抽象概括能力不强,形象思维占主导,个人思维常受一些定势思维的干扰。对于复杂些的计算题,其理解、掌握还不够,有一定的难度。

四、教学目标

针对教材的特点和学生情况,分别从知识与技能、过程与方法、情感态度与价值观三维目标来确定本节课的教学目标。

知识与能力目标:理解和掌握乘法分配律的意义,培养学生分析、归纳的能力;学会用字母表示乘法分配律;掌握乘法分配律的特点,区分乘法分配律与结合律的不同点。

过程与方法目标:经历乘法分配律的推导、发现过程,体验比较分析、归纳发现的学习方法。。

情感、态度与价值观目标:感受数学知识之间的逻辑之美,提高学生的审美能力,培养学生独立思考的良好学习习惯。

五、教学重点、难点

重点:本节课的教学重点是理解乘法分配律的意义,并归纳出定律。

难点:难点是理解乘法分配律的意义及应用。

六、教学准备:交互式多媒体、课件ppt.(以下均为做课课件)

七、教法、学法:

(1)、教法:由于学生已初步具有探索、发现运算定律并应用运算定律简便计算的经验,本节课遵循“解决问题—发现规律—交流规律—表达规律”的顺序来呈现内容,这样的安排易引起学生对学过的方法的回顾,也有利于他们顺利学习和掌握本节课内容。

(2)学法:在实际教学时,我强调依例题情境引导观察、比较、分析、理解、概括出乘法分配律,以亲身经历贯穿学习全过程,重视学生的成功体验,引领他们在合作、交流的和谐氛围中理解算理,一步步发现与成功、探索与理解。

本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。让学生多思、多说、多练,积极主动参与教学的整个过程。

八:教学过程:

(一)、谈话导入、激发兴趣。(课件出示图片ppt4)

1.谈话:不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说是不是挺有趣的其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究(见课件)

设计意图:看我们中国的语言很神奇、美妙。在数学上是否也有这样神奇、美妙的现象呢那么,我们数学上有没有可能把一个算式变成两个算式,两个算式合成一个算式呢

使学生带着问题,带着对算式的好奇心进入本科的学习。激发学生的求知欲,体现数学知识源于生活以及数学的现实意义

(二)、创设生活情境,引入新课。

谈话:通过上节课的探索,我们已经发现了乘法交换律和乘法结合律,你们还记得吗老师记得在上节课的学习中有一个问题没有解决,对吗咱们今天再继续探索,看看又会发现什么新的规律。

(课件出示主题图)(课件出示图片ppt5)

3.提问:(出示ppt6)

(1)你从图中获得了哪些信息

(2)今天我们要解决的问题是什么

预设:一共有25个小组,每组里4人负责挖坑和种树,2人负责抬水、浇树。问题是“一共有多少名同学参加了这次植树活动”

设计意图:课件设计是为了让学生想说、敢说、抢着说,激发他们早点进入最佳学习状态,为探究新知识聚集动力。

(三)、自主探索、合作交流。(课件出示ppt7)

一)初步感知

1.提问:要解决一共有多少名同学参加了这次植树活动先求什么再求什么你是怎么列式计算的

2.学生解答后汇报。

追问:还有不同的想法吗

板书:(4+2)×25 4×25+2×25

3.组织交流

(1)说说每道算式的意思

预设:(4+2)×25是先求出每组有多少人,再计算出25组有多少人。4×25+2×25是先求才挖坑和种树的人数,再求出抬水和浇水的人数,最后求出一个的人数。

(2)比较最后的计算结果。(相同)

追问:可用等号连接吗写成一个算式。

板书:(4+2)×25 = 4×25+2×25

读:谁能把这道等式读一遍。多读从语言上感悟乘法分配律。

观察,这道等式左边和右边有什么相同的地方和不同的地方

请跟你的同桌说说。全班汇报。

相同的地方:结果相同,每个算式都有3个数。

不同的地方:运算顺序不同。

设计意图:合理利用并依据现实生活实际改造现有的主题图情境,更贴近生活实际的生活情境创设,使学生更易在具体情境中发现问题、提出问题、解决问题,得出不同的解题思路,列出不同的算式,在计算结果相等的情况下组成等式,这为学生感受乘法分配律提供了现实背景,学生从中也体会到乘法分配律的合理性

(二)、猜想验证。(课件出示ppt9)

1.小组内写一写,算一算,举出这样的例子。

2.汇报交流。

3.引导学生总结概括。(提示:等式左右两边是怎样计算的)

预设:等号左边的式子是先算括号里两个加数的和,再和括号外面的数相乘;

而等号右边的式子是把括号里的两个加数分别去乘括号外面的数。

(三)、同类推广,总结归纳。(出示ppt10、11)

1.有这样特征的例子多不多,你能写一个这样的等式吗(要求数字用得简单些)。请你在你的本子上写一写。

2.你是怎样验证的。

3.同桌互相验证。

4.用符号表示:这样的。式子很多,你能用自己喜欢的办法把具有这种特征的等式表示出来吗(用彩笔)

5.揭示课题(小结:出示ppt12)

我们已经用自己喜欢的方法把这种规律表示出来,其实,这就是我们今天要学的—《乘法分配律》,一起读一遍。

6.统一用字母表示:(课件出示ppt13)

如果用字母a、b、c表示这三个数,你能用它们表示具有这种特征的式子吗

(a+b) ×c=a×c+b×c

总结规律:

(a+b) ×c=a×c+b×c

a×(b+c)=a×b+a×c

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配率。

设计意图:新课程标准指出,学生学习数学的过程是充满了观察、实验、猜想、验证、推理与交流等丰富多彩的数学学习活动,因而在设计这一环节时让学生写出一个算式的另一种形式,并说说这样写的理由,让学生借助已有的生活经验来叙述自己写的算式,增加学生对乘法分配律的理解,同时让学生写一写这样的算式,说说自己是怎样写的,从而让学生自己从中发现乘法分配律,培养了学生的探究能力。]四)学习乘法分配律的逆用。

1、既然左边=右边,那右边等于左边,谁来读一读。

2、从右往左看,这个式子有什么特征

3、乘法分配律可以从左边用到右边,也可以从右边用到左边。

设计意图:让学生明白:乘法分配律左右两边可以相互逆用。

(四)、巩固应用,拓展延伸。(出示课件ppt16)

1.判断正误,下面哪些算式是正确的正确的画“√”,错误的画“×”。

56×(19+28)=56×19+28 ( )

32×(7×3)=32×7+32×3 ( )

64×64+36×64=(64+36)×64 ( )

问题:说一说你的判断理由。

2.下面哪些算式运用了乘法分配律(出示课件ppt17)

117×3+117×7=117×(3+7) ( )

4×a+a×5=(4+5)×a ( )

24×(5+12)=24×17 ( )

36×(4×6)=36×6×4 ( )

3.李阿姨购进了60套这种运动服,花了多少钱(出示课件ppt18)

4.观察下面的竖式,说一说在计算的过程中运用了

什么运算定律。出示课件ppt19

25×12=25×2+25×10

5,做一做,用乘法分配律计算下面各题。(出示课件ppt19)

103×12 20×55

6、回顾、拓展

1、老师想知道“挖坑和种树的人数”比“抬水和浇树的人数”多多少人你会列式吗

学生回答,师板书。(在原有算式上添上减号即可)

(4-2)×25 = 4×25-2×25

2、说说算式所表达的意思。

3、进一步完善乘法分配律。字母表示为:(a-b) ×c=a×c-b×c

[设计意图:练习设计上,我深入解读教材练习设计的同时,对练习进行了适当的加工改造,力求体现现实性、趣味性、层次性、思考性、发展性。多形式、多层次的练习,深化学生对乘法分配律意义的理解,更多注重的是深层次的挖掘,比如:乘法分配律的逆应用,其在减法中的应用等,这使得乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解。]

(五)、课堂小结

这节课你学会了什么请说一说。

板书设计乘法分配律

(4+2)×25 = 4×25+2×25

(a+b) ×c=a×c+b×c a×(b+c)=a×b+a×c

两个数的和乘一个数,可以把这两个加数分别与这个数相乘,再把两个积加起来,结果不变。这叫做乘法分配率。

教学反思

乘法分配律的教学是在学生学习了乘法交换律、乘法结合律的我基础上教学的。乘法分配律也是学生在这几个定律中的难点。

在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。要在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。

乘法分配律教学设计 篇7

教学目标:

1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重难点:

发现并理解乘法分配律。

教学准备:挂图、小黑板。

教学流程:

一、创设情境,导入新课。

师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。

看看买什么衣服好看呢。

二、自主探索,合作交流。

1.出示:买5件夹克衫和5条裤子,一共要付多少元?

师问你打算怎样算?

生口答师板书:

(65+45)×565×5+45×5

请学生分别说清两道算式的含义。

2.师问猜想一下,这两道算式的结果会怎样?

要验证我们的。算式是否正确,应该用什么方法?

生计算,个别板演。

证明这两道算式的结果是相等的。

中间应用“=”接连。

3.生读算式(65+45)×5=65×5+45×5

师问等号两边的算式有什么相同和不同?

生同桌说一说,并汇报。

4.这两道算式相等是一种巧合还是有规律的呢?

出示:(2+10)×6=2×6+10×6

(5+6)×3=5×3+6×3

师问中间可以用“=”来连接吗?

5.小组讨论:这三组等式左边有什么特点?

右边有什么特点?

生汇报。

6.师问你能写出具有这样规律的等式吗?

生独立写一写,个别板书。

7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?

生写一写,个别板演。

8.揭题:乘法分配律

(a+b)×c=a×c+b×c

9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。

三、巩固练习,拓展应用。

想想做做:

1.在口里填上合适的数,在○里填上运算符号。

(42+35)×2=42×口+35×口

27×12+43×12=(27+口)×口

15×26+15×14=口○(口○口)

72×(30+6)=口○口○口○口

强调:乘法分配律,可以正着用,也可以反着用。

2.横着看,在得数相同的两个算式后面画“√”

(28+16)×728×7+16×7

15×39+45×39(15+45)×39

74×(20+1)74×20+74

40×50+50×9040×(50+90)

3.算一算,比一比,每组中哪一道题的计算比较简便。

(1)64×8+36×825×17+25×3

(64+36)×825×(17+3)

让学生体会乘法分配律可以使计算简便。

4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。

生独立完成并汇报。

5.你能根据下图列出两

道综合算式吗?

上面的两道算式能组成一个等式吗?

四、全课小结

师问今天你有什么收获?和你的小伙伴说一说。

五、课堂作业

《补充习题》第26页。

吴正宪《乘法分配律》的教学设计 篇8

教学内容

义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律

教材分析

本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。

学情分析

本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。

教学目标

1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。

2、使学生感受数学与现实生活的联系,初步感受运用乘法分配律能进行一些简便运算。

3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。

教学重点

理解乘法分配律的意义。

教学难点

发现与归纳乘法分配律。

教学准备

课件习题卡

教学过程

一、结合实事创设情景,引入新课

1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!

2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?

3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?

二、合作交流,探索发现新知

1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知——乘法分配律。

板书:乘法分配律

2、发现和归纳乘法分配律

(1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的发现和同桌说一说好吗?

(2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?

(3)生举例并展示,共同验证并读一读式子。

(3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?

(4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书P36读一读。

3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。

三、小结

同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?

四、分层练习,逐级达标

1、填一填:习题卡第一题

巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。

学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。

2、看一看:习题卡第二题

3、应用:请生完成书P38第7题。使学生感受学习乘法分配律的用处是使计算简便。

五、回顾课程,进行总结

同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?

板书设计

乘法分配律

(5+10)×24=5×24+10×24

(a+b)×c=a×c+b×c

25×(4+2)=25×4+25×2

a×(b+c)=a×b+a×c

习题卡

填一填

1、(32+25)×4=32×()+25×()

2、(64+12)×5=()×5+()×5

3、(7+6)×8=7868

4、(43+25)×2=

5、3×6+7×6=(+)

看一看

下面哪个算式是正确的?正确的画“√”,错误的画“×”

(19+28)×56=19×56+28

(7×3)×32=7×32+3×32

64×64+36×64=(64+36)×64

《乘法分配律》优秀教学设计 篇9

教学内容

P36页例3,做一做,练习六习题。

教学目标

1、知识与技能:引导学生探究和理解乘法分配律。

2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

教学重点

乘法分配律的意义和应用。

教学难点

乘法分配律的反应用。

教学过程

一、目标导学

(一)导入新课

1、复习导入

(8+2)×1258×125+2×125

2、揭示课题:乘法分配律

(二)展示目标(见教学目标1、2)

二、自主学习

(一)出示自学提纲(自学教材P36页例3并完成自学提纲问题)

1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?

2、计算4×25+2×25的运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?

3、计算这两道题你发现了什么?能用一句话概括吗?

4、这是乘法的什么运算律?用字母怎样表示?

5、会用简便算法计算4×25+6×25吗?

(二)学生自学(学生对照自学提纲,自学教材P36页例3并完成自学提纲问题,将不会的问题做标注)

(三)自学检测

下面哪些算式运用了乘法分配律?

117×(3+7)=117×3+117×7

24×(5+12)=24×17

(4+5)×a=4×a+5×a

三、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

(二)师生互探

1、解答各小组自学中遇到不会的问题。

2、针对自学提纲5题请不同方法同学汇报。

3、结合“自学提纲”引导学生归纳总结:(并板书)

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。

四、达标训练(1、2题必做,3题选做、4题思考题)

1、下面哪个算式是正确的?正确的打√,错误的打×。

56×(19+28)=56×19+28()

32×(7+3)=32×7+32×3()

64×64+36×64=64×(64+36)()

2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数

⑴25×(200+4)⑵35×201

25×200+25×435×200+35

⑶265×105—265×5⑷25×11×4

265×(105—5)11×(25×4)

3、用乘法分配律计算。

103×2020×5524×205

4、在()里填上适当的数。

167×2+167×3+167×5=167×()

28×225—2×225—6×225=()225

39×8+6×39—39×4=()×()

五、堂清检测

(一)出示检测题(1-2题必做,3题选做,4题思考题)

1、用简便方法计算。

24×75+24×25125×22—125×14

(25+20)×435×99+35

2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?

3、计算。

89×10135×36+35×63+35

4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?

(二)堂清反馈:

作业布置

练习册相关习题。

板书设计

乘法分配律

一共有多少名同学参加了这次植树活动?

(1)(4+2)×25(2)4×25+2×25

=6×25=100+50

=150(人)=150(人)

(4+2)×25=4×25+2×25

(a+b)×c=a×c+b×ca×(b+c)=a×b+a×c

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。