《四年级数学下册《乘法分配律》教案设计优秀8篇》
作为一名人民教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。来参考自己需要的教案吧!这次漂亮的小编为您带来了四年级数学下册《乘法分配律》教案设计优秀8篇,希望能够给予您一些参考与帮助。
乘法分配律 篇1
课题五:乘法分配律的应用
教学内容:教科书第64页例7,练习十四的第3一10题。
教学目的:使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。
教学难点 :应用乘法分配律简便计算
教具准备:将复习中的题目写在小黑板上。
教学过程 :
一、复习
教师出示试题:
1.(35+65)×37 2.35×37+65×37
3.85×(174+26) 4.85×174+85×26
5.(80+8)×25 6.80×25+8×25
7. 32×(200+3) 8.32×200+32×3
“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”
教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。
“哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。
教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。
教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。
“这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”
教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。
二、新课
1.教学例7
(1) 教师出示例题:计算9×37+9×63。
教师:这道题是要计算两上乘积的和。
“仔细看一看这道题里的两上乘法计算中的因数有什么特点?”
(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)
“联系上面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。)
“这是应用了什么运算定律?”
教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。
教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。
(2)教师出示例题:102×43
教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。
“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)
教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后。
板书:102×43
=(100+2)×43
=100×43+2×43
=4386
“上面计算中的第二步根据是什么?”(乘法分配律)。
教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。
三、课堂练习
做练习十四的题目。
1. 第3题,2. 让学生口算。当计算101×57和45×102时,3. 提问:“你是怎样做的?得多少?”
2、第4题,5. 先让学生自己计算。核对时让学生回答。
“如果按运算顺序计算,应该先算什么?”
“怎样计算简便?根据是什么?”
第4小题,如果学生有困难,教题先把算式38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。
“下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。
3、第7题,7. 先让学生独立做,8. 然后集体核对,9. 核对的要让学生说一说是怎样做的。当核对“26×3”时,10. 学生说出计算方法后,11. 再让学生说一说计算过程。学生发言后,12. 教师说明:26乘以3可以写作(20+6)×3,13. 根据乘法分配律等于20乘以3的积再加6乘以3的积,14. 这实际上是应用了乘法分配律。这就是说,15. 我们过去学过的乘法口算有些应用了乘法分配律。这道题中的第7小题应用乘法结合律比较简便,16. 第4、6、8、9题应用乘法分配律比较简便。
4、 第9题和第10题,18. 先让学生独立做,19. 核对时要让学生说出每个算式的意义。
5.提前做完的学生可以做第l9*题。当学生想出一种算法后,还要引导学生想一想其它的做法。这道题的做法有:(80—30)×110一30×110;
(80—30—30)×110;
(80—30×2)×110。
四、作业
练习十四的第5、6、8题。
乘法分配律 篇2
教学内容:教科书第68页例5,第69页“做一做”中的题目和练习十四的第l、2 题。 教学目的:使学生理解并掌握,培养学生的分析推理能力。
教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上面5个白色的正方形和3个红色的正方形,如:□□□□□■■■,共做4条。
教学过程 :
一、复习
教师出示口算卡片,如:(36+64)×8,20×5+50×2,60×10+10×10等,计算每一题时,第一个学生回答“先算什么”,第二个学生回答“再算什么”,第三个学生回答“接下来算什么”。
二、新课
1.教学例5。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
“图中一共有多少个正方形?你是怎样想的?”先请一个学生回答。教师把学生所列的算式写在黑板上。
“还有别的算法吗?你是怎样想的?”再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
”(5+3)×4 5×4+3×4
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形。
第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出于共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
“这两个算式的计算结果怎样?”
“这两个算式的计算结果相等,说明这两个算式有什么关系?”学生回答后,教师指出:这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5+3)×4=5×4+3×4
“等号左面的算式是什么意思?”(5与3的和乘以4。)
“等号右面的算式是什么意思?”(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18+7)×6 18×6+7×6
“左面的算式是什么意思?”(18与7的和乘以6。)
“右面的算式是什么意思?”(18与7分别乘以6,再把两个积相加)
“算一算左面的算式等于什么?”(18加7是25,25乘以6是150。)
“算一算右面的算式等于什么?”(两个积分别是108和42,它们的和等于150)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它连起来,教 师边说边在两个算式中间画一个等号。
“这两个算式相等。说明18与7的和乘以6等于什么?”说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式 20×(15+9) 20×15+20×9
“先来计算一下这两个算式各等于多少?”
“两个算式都等于多少?”
“这两个算式相等,说明20乘以15与9的和等于什么?
2.进行抽象概括。
教师指着上面的算式提问:
“仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的 地方?”多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数;第三个等式是一个数乘以两个彩的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。
“再看等号右面的三个算式有什么相同的地方?:学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
“等号左面与等号右面相等是什么意思?”学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做。同时板书。让学生看教科书第68页下面的方框里的结语,全斑齐读两遍。
教师:如果用“a、b、c“表示三个数,可以写成下面的形式:
(a+b)×c=a×c+b×c
“等号左面(a+b)×c表示什么意思?”(表示两个数的和同一个数相乘)。
“等号右面“a×c+b×c表示什么意思?”(表示把两个加数分别同这个数相乘;再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)×27,提问:
1.“这个算式中是哪两个数的和乘以哪个数?”
“根据,这个算式等于哪两个乘积的和?”
教师在黑板上再写算式:185×27十15×27,提问:
“这个算式中是哪两个数分别乘以哪一个数?”
“根据,这个算式等于哪两个数的和乘以哪一个数?”
2.做第69页“做一做”中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
四、作业
练习十四的第1、2题。
乘法分配律 篇3
教学内容:
p36/例3(乘法分配律)
教学目的:
1.引导学生探究和理解乘法分配律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:
乘法分配律的意义和应用。
教学难点:
乘法分配律的反应用。
教学过程:
一、铺垫孕埋伏
思考问题。
在学习乘法的运算定律时,我们观察了一幅主题图,有的同学还提出了一个问题:一共有多少名同学参加了这次植树活动?
二、新授
小组讨论,尝试用不同的方法解决。
教师引导学生用多种方法解答。
学生汇报自己的解法。引导学生说明不同算法的理由。
(1)(4+2)×25
=6×25
=150(人)
4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。
(2)4×25+2×25
=100+50
=150(人)
4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。
小组合作:
(1)两组算式有什么相同点?
(2)两组算式有什么不同点?
(3)两组算式有什么联系?
汇报。
教师要根据学生的汇报,灵活地进行引导,总结出要点。
你还能举出像这样的几组算式吗?
学生举例。
根据学生举例板书。
到底我们举的例子是不是符合这样的规律呢?请学生验证。
请学生用语言表述出发现的规律。
板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
你有什么好方法帮助我们大家记住乘法分配律?
简记为:
和与一个数相乘=积相加
三、巩固练习
p36/做一做
p38/5
在练习小结中,帮助学生记忆乘法分配律。
四、小结
学生汇报自己的收获。
教师引导小结,相应完善板书。
板书设计:
乘法分配律
一共有多少名同学参加了这次植树活动?
(1)(4+2)×25 (2)4×25+2×25
=6×25 =100+50
=150(人) =150(人)
(4+2)×25=4×25+2×25
┆(学生举例)
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个
数分别相乘,再相加。这叫做乘法分配律。
课后小结:
四年级数学下册《乘法分配律》教案 篇4
教学目标
1.引导学生探究和理解乘法分配律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:借助实际问题体会、认识乘法乘法律。
教学难点:用乘法交换律和结合律算式。
预设过程
一、引入
1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?
2、理解题意
二、探新
1、学生独自列式
2、小组交流想法
3、汇报:根据学生的回答板书
25×(4+9)=25×4+25×9=325
25×(4+9)=25×4+25×9
指名学生说出每一步表示的意义
(4+9)×25=4×25+9×25=325
(4+9)×25=4×25+9×25
4、改题:如果改为买45副,你又可以怎样算?
45×(4+9)=45×4+45×9
(4+9)×45=4×45+9×45
5、观察:请你们仔细观察上面这几题,
6、你们发现了什么?
相同点:左边都是两个数的和与一个数相乘,
右边都是两个数和这个数相乘再相加。
不同点:算式左边和右边有什么不同?
联系:算式左边和算式右边有什么联系?
6、举例:这样的算式你能再举出一些吗?
7、概括:你们能把上面的规律概括成一句话吗?
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
你能用字母表示吗?(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
8、质疑:还有什么问题?
三、巩固
1、做一做
判断并说明理由
2、第5题:下面哪些算式运用了乘法分配律
3、第6题
103×1220×5524×20525×24
四、:你们还有什么问题?
五、布置作业:
1、口算
2、作业本
3、寻找生活中乘法分配律的例子。
板书设计
作业设计:
课堂作业本P15
口算训练P16
课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。
在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说,
生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。
生2:是呀,一个数好像是公共财产,都是它们共有的。
这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。
《乘法分配律》数学教案 篇5
教学内容:
教科书第64页例7,练习十四的第3一10题。
教学目的:
使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。
教学难点:
应用乘法分配律简便计算
教具准备:
将复习中的题目写在小黑板上。
教学过程:
一、复习
教师出示试题:
1、(35+65)×37 2、35×37+65×37
3、85×(174+26) 4、85×174+85×26
5、(80+8)×25 6、80×25+8×25
7、 32×(200+3) 8、32×200+32×3
“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”
教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。
“哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。
教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。
教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。
“这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”
教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。
二、新课
1、教学例7
(1)教师出示例题:计算9×37+9×63。
教师:这道题是要计算两上乘积的和。
“仔细看一看这道题里的两上乘法计算中的因数有什么特点?”
(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)
“联系上面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。)
“这是应用了什么运算定律?”
教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。
教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。
(2)教师出示例题:102×43
教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。
“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)
教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后。
板书:102×43
=(100+2)×43
=100×43+2×43
=4386
“上面计算中的第二步根据是什么?”(乘法分配律)。
教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。
三、课堂练习
做练习十四的题目。
1、第3题,2、让学生口算。当计算101×57和45×102时,3、提问:“你是怎样做的?得多少?”
2、第4题,5、先让学生自己计算。核对时让学生回答。
“如果按运算顺序计算,应该先算什么?”
“怎样计算简便?根据是什么?”
第4小题,如果学生有困难,教题先把算式38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。
“下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。
3、第7题,7、先让学生独立做,8、然后集体核对,9、核对的要让学生说一说是怎样做的。当核对“26×3”时,10、学生说出计算方法后,11、再让学生说一说计算过程。学生发言后,12、教师说明:26乘以3可以写作(20+6)×3,13、根据乘法分配律等于20乘以3的积再加6乘以3的积,14、这实际上是应用了乘法分配律。这就是说,15、我们过去学过的乘法口算有些应用了乘法分配律。这道题中的第7小题应用乘法结合律比较简便,16、第4、6、8、9题应用乘法分配律比较简便。
4、 第9题和第10题,18、先让学生独立做,19、核对时要让学生说出每个算式的意义。
5、提前做完的学生可以做第l9*题。当学生想出一种算法后,还要引导学生想一想其它的做法。这道题的做法有:(80―30)×110一30×110;
(80―30―30)×110;
(80―30×2)×110。
四、作业
练习十四的第5、6、8题。
《
乘法分配律 篇6
教学目标
1.使学生理解乘法分配律的意义。
2.把握乘法分配律的应用。
3.通过观察、分析、比较,培养学生的分析、推理和概括能力。
教学重点
乘法分配律的意义及应用。
教学难点
乘法分配律的反应用。
教具学具预备
口算卡片、投影仪。
教学步骤
一、铺垫孕伏
1. 口算。
(27 73)×8 40×9 40×1 14×(10 2) 10×6 10×4
2. 用简便方法计算。(说明根据什么简算的)
25×63×4
3. 师生比赛,看谁算得又对又快。
20×5 5×80 (1250 125)×8
让学生说明是怎样算的?
二、探究新知
1.导入:
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容。(板书课题:乘法分配律).
2.教学例6:
(1)出示例6:演示课件“乘法分配律”出示例6下载
(2)引导学生观察每组的两个算式。
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接。
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义。
(6)反馈练习:按题要求,请你说出一个等式。(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘。
其次是等号右边两个加数分别同一个数相乘再把两个积相加。
最后是等号左右两边的两个算式相等。
3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做乘法分配律。
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,假如用a、b、c表示3个数, 乘法分配律用字母怎样表示?
根据练习学生从而得出: (a b)×c=a×c b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便。
5.教学例7:演示课件“乘法分配律”出示例7下载
(1)出示例7:102×43
启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
引导学生对比:(100 2)×43,102×(40 3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便。
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据乘法分配律,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37 9×63
=9×(37 63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、 、×的形式,也就是两个积的和。
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数。
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数。
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250 125)×8,老师就是应用的乘法分配律使计算简便。现在你们会了吗?
三、巩固发展 演示课件“乘法分配律”出示练习 下载
1. 练习十四第1题。
根据运算定律在□里填上适当的数。
(43 25)×2=□×□ □×□
8×47 8×53=□×(□ □)
3×6 6×7=□×(□ □)
8×(7 6)=8×□ □×□
2.在横线上填上适当的数。
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。
3.把相等的算式用等号连接起来:
(1)32×48+32×5232×(48+52)
(2)(24+8)×824×5+24×8
(3)20×(l+15)0×17+20×15
(4)(40+28)×540×5+ 28
(5)(10×125)×810×8+125×8
(6)4×(30+25)4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42+29)与下面的相等
①28×42+28×29②(28+42)×(28+29)③28×42×29
(2)与a×8-b×8相等的式于是
①(a+b)×8②(a-b)×(8+8)③(a-b)×8
(3)与(10+8+9)×5相等的式子是
①10×5+8×5+9×5②10+5×8+5×9③10×5+5×8+9
5.练习十四第4题,投影出示。
一辆凤凰牌自行车420元,一辆永久牌自行车405元。现在各买三辆。买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加。希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便。
五、布置作业
练习十四第3题。
用简便方法计算下面各题。
(80 8)×2535×37 65×37
32×(200 3)38×29 38
板书设计
四年级数学下册《乘法分配律》教案 篇7
教案内容:
一、课题:《乘法分配律》
二、主要讲解的内容:
课本第26页例7及相关练习题
三、学习目标
1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。
2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。
3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。
教学重难点
借助乘法的意义理解乘法分配律的意义和内涵。
四、教学准备:多媒体课件,电脑,网络,耳机等
学生准备:数学书、笔、练习本、笔记本
五、教学环节
1、反馈家庭作业(表扬做的优秀的学生,鼓励并引导完成不太好的学生积极完成作业)
2、复习导入
算一算,比一比
(10+5)×5= (8+2)×7=
10×5+5×5= 8×7+2×7=
课前同学们已经完成了复习任务,请同桌交流计算的结果和发现。我们已经学习了乘法交换律、结合律,应用它们可以使一些计算简便。
什么是乘法的交换律和结合律?今天这节课我们再来学习乘法的另一个运算定律。
3、新授
还记得我们提出的第三个问题吗:一共有多少名同学参加了这次植树活动?
①自主探索,独立解决问题
你怎样解决这个问题?列式计算。【设计意图:让学生独立解决问题,促成多种解决问题方法的生成,为探索运算定律准备了资源。】②汇报交流,明确算法 学生先自己做上传自己想法,连麦让个别学生说明。
谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。
方法一:先算每个小组人数,再算总人数。
(4+2)×25
=6×25
=150(人)
方法二:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数,再算总人数。
4×25+2×25
=100+50
=150(人)
同学们用不同的方法解决了这个问题,计算结果都是150人。
③观察对比,概括规律
这两个算式之间有什么关系呢?
(4+2)×25=4×25+2×25
你能用自己的语言来描述这个等式吗?学生发语音
左边是4加2的和与25相乘,右边是4和2分别与25相乘,然后再相加。左右两边结果相等。
教师适时用箭头表示出来。
请你再举几个这样的例子吗,写在练习本上。
拍照展示
观察这些等式,你有什么发现?
两个数的和与一个数相乘,或者先把它们与这个数分别相乘再相加,结果相等。
④你能结合乘法的意义理解这个规律吗?
如:(4+2)×25=4×25+2×25
左边表示6个25,右边表示4个25加2个25,也是6个25,所以两者结果相等。
得出结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
⑤用字母怎样表示这个规律?
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
4、练习巩固
(1)下面哪些算式是正确的?正确的画“√”,错误的画“×”。
56×(19+28)=56×19+28 ( )
32×(7×3)=32×7+32×3 ( )
64×64+36×64=(64+36)×64 ( )
答案:× × √
解析:【考查目标1、2】借助乘法意义判断,进一步理解乘法分配律的含义,注重形式表达的认识与强化。
(2)观察下面的竖式,说一说在计算的过程中运用了什么运算定律。
答案:运用了乘法分配律25×12=25×2+25×10
解析:【考查目标1、2】结合两位数乘两位数的笔算过程,唤起学生已有的经验,体会乘法的算法与乘法分配律的关系。
(3)李阿姨购进了60套这种运动服,花了多少钱?
答案:(75+45)×60
=120×60
=7200(元)
解析:【考查目标3】借助熟悉的生活问题情境,在列出不同算式的基础上,以生活情境的材料解释算式意义,进一步加深对乘法分配律意义的认识和理解。
5、课堂小结通过本节课的学习,你都有哪些收获?
这节课我们一起研究了一个新的运算定律:乘法分配律
用字母表示是(a+b)×c=a×c+b×c
左边表示(a+b)个c,右边表示a个c加b个c,所以两者结果相等。
如果反过来,等式仍然成立。
如4×7+4×3=4×(7+3)
利用这个定律可以使计算简便,帮助我们解决许多问题。
6、钉钉家校本布置家庭作业,当天提交。
乘法分配律教学设计 篇8
一、教材依据
义务教育课程课程实验教科书(北师大版)小学数学四年级上册第三单元《乘法》探索与发现(三)乘法分配律(教材48、49页)
二、设计思想
“乘法分配律”的内容,被作为学生探究活动的题材,编排在《乘法》单元的“探索与发现”一节中,意在通过学生经历数学规律的探索过程,体验探索数学规律的基本步骤。根据教科书的编写意图,我在设计这节课时,力图在教学目标、教学方式及学生的学习方式等几个方面有所创新、有所突破。
在在教学目标的确定上,主要是通过经历探索乘法分配律的活动,发现乘法分配律,希望通过数学活动,为学生提供充分探究的空间,使学生经历知识的形成过程,体现探究性学习的特征和要求。同时通过探究活动,引导学生用数学的思维方式、沿着“发现——猜想——验证——总结——应用”的轨迹去发现、去探索,经历探索数学规律的过程,达到启迪数学思想方法的目的。教学的重难点定位为引导学生在探索活动中发现、感悟、体验数学规律,进而学会应用规律。
三、教学目标:
1、经历探索的过程,培养学生观察、归纳、概括等初步的逻辑思维能力;
2、理解和掌握乘法分配律并会用字母表示;
3、能够运用乘法分配律进行简便计算;
4、使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。
四、教学重点:
引导学生运用数学思维方式探索乘法的分配律,归纳乘法分配律。
五、教学难点:
乘法分配律的应用,进行一些简便计算。
六、教学准备
多媒体教学课件
七、教学过程
(一)情境导入,发现问题
昨天,老师和两位小朋友去参观了正在装修中的学生食堂三楼多功能教室,善于观察的小朋友给我们带来了一道数学问题,你们能不能帮忙解决下?
课件出示:图片一共贴了多少块瓷砖?
(1)谁能估一估,贴了多少块瓷砖?
(2)谁来用自己的方法来验证估计是否正确?
还有不一样的方法吗?谁来说说看?(生口答,师板书)
板书:6×9+4×9(6+4)×9
=54+36=10×9
=90(块)=90(块)
(3)请同学们观察,看看有什么发现?(学生讨论,汇报)
(二)引导探究,发现规律
1、猜想、验证
(1)能不能利用你的发现举些例子来呢?
生:举例
(2)提出猜想:还有更多的算式吗?是不是所有的算式都具有这一规律呢?
(学生小组合作尝试,进行探索)
2、概括、归纳
(1)说说你们刚才验证的情况。
生1:我按照这个规律写出的两个算式是:7×5+3×5和(7+3)×5的得数都等于50。
生2:我按照这个规律写出的两个算式是:42×64+42×36和42×(64+36)的得数都等于250。
生3……
生4……
(2)看来这个规律是普遍存在的。其实我们发现的这个规律叫做乘法分配律。刚才我们举了很多这个规律的例子,这样的例子能列举完吗?
问:我们能不能用一个式(字母)把乘法分配律表示出来呢?
生:(a+b)×c=a×c+b×c
(3)等号表示什么意思?(这个等式反过来也成立)
(三)加强应用、深化理解
我们发现了乘法分配律,它又有怎样的应用呢?
(课件分步出示练习)
1、填一填(课本49面练一练第一题)
2、请同桌同学合用研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
(1)学生讨论研究;
(2)汇报计算方法,重点说为什么这样算;
(3)小结:通过研究,应用乘法分配律可以使一些计算简便。
(四)巩固练习、解决问题
(课件分步出示)
1、填一填
(10+7)×6=__×6+__×6
8×(125+9)=8×__+8×__7×48+7×52=__×(__+__)
2、同桌合作研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
2、下面这些题,能用简便方法计算吗?怎样计算?
(20+4)×2532×(200+3)38×29+38×1
39×10138×29+3825×41
(五)课堂小结
1、说说今天我们研究了什么?
2、大家想一想,我们是怎样发现乘法分配律的呢?
3、乘法分配律有什么应用?