首页 > 教学教案 > 小学教案 > 五年级教案 > 北师版数学书五年级上册教案(优秀7篇)正文

《北师版数学书五年级上册教案(优秀7篇)》

时间:

作为一名教师,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。那么大家知道正规的教案是怎么写的吗?这次帅气的小编为您整理了北师版数学书五年级上册教案(优秀7篇),如果能帮助到您,小编的一切努力都是值得的。

北师大版四年级数学上册教案 篇1

三维目标

1.知识与技能

(1)经历探究物体的形状与几何体的关系过程,能从现实物体中抽象得出立体图形。

(2)经历立体图形与平面图形的转换过程,掌握一些简单的立体图形与平面图形的互相转化的技能。

(3)经历对点、线、面、体关系的研究的数学活动过程,建立平面图形与立体图形的联系。

(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、射线、线段和角的表示方法;掌握角的度量方法。

(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,探索线段与线段之间、角与角之间的数量关系。

(6)认识线段的等分点,角的平分线、角角和补角的概念。

2.过程与方法

(1)会用掌握的几何体知识描述现实物体的形状,在探索立体图形与平面图形的关系中,发展空间观念。

(2)通过对本章的学习,学会在具体的现实情境中,抽象概括出数学原理。

(3)学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考。

(4)能在现实物体中,发现立体图形和平面图形。

(5)能在具体的现实情境中,发现并提出一些数学问题。

(6)通过小组合作、动手操作、实验验证的方法解决数学问题。

3.情感态度与价值观。

(1)积极参与数学活动的过程,敢于面对数学活动中的困难,并能独立地或通过小组合作的方法,运用数学知识克服困难,解决问题。

(2)通过对本章的学习,培养和提高抽象概括能力和空间想象能力,体验数学活动中探索性和创造性,感受丰富多彩的图形世界。

重、难点与关键

1.重点:

(1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;初步建立空间观念。

(2)掌握两点确定一条直线的性质,掌握两点之间线段最短的性质,会用符号表示直线、射线和线段,会比较线段的大小,会画一条线段等于已知线段,了解两点距离的定义。

(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系。

2.难点:

(1)立体图形与平面图形之间的互相转化。

(2)从现实情境中,抽象概括出图形的性质,用数学语言对这些性质进行描述。

3.关键:

(1)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣。

(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性。

课时划分

4.1 多姿多彩的图形 2课时

4.2 直线、射线、线段 2课时

4.3 角 4课时

数学活动 1课时

回顾与思考 2课时

教学设计

4.1 多姿多彩的图形

4.1.1 几何图形

教学内容

课本第116~120页。

1.知识与技能

(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;

(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。

2.过程与方法

(1)经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力。

(2)经历问题解决的过程,提高解决问题的能力。

3.情感态度与价值观

(1)积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;

(2)倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。

重、难点与关键

1.重点:从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点。

2.难点:立体图形与平面图形之间的转化是难点。

3.关键:从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键。

教具准备

长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片。

教学过程

一、引入新课

1.打开电视,播放一个城市的现代化建筑,学生认真观看。

2.提出问题:

在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?

二、新授

1.学生在回顾刚才所看的电视片后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验。

2.指定一名学生回答问题,并能正确说出这些几何图形的名称。

学生回答:有圆柱、长方体、正方体等等。

教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征。

3.立体图形的概念。

(1)长方体、正方体、球、圆柱、圆锥等都是立体图形。

(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)

(3)用幻灯机放映课本4.1-4的幻灯片(或用教学挂图).

(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?

(5)探索解决问题的方法。

①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案。

②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等。

4.平面图形的概念。

长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形。

注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形。

5.立体图形和平面图形的转化。

(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,让学生从不同方向看。

(2)提出问题。

从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?

(3)探索解决问题的方法。

①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形。

②进行小组交流,评价各自获得的结论,得出正确结论。

③指定三名学生,板书画出的图形。

6.思考并动手操作。

(1)学生活动:在小组中独立完成课本第119页的探究课题,然后进行小组交流,评价。

(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,并对学生给予鼓励,激发学生的探索热情。

7.操作试验。

(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性。许多立体图形都能展开成平面图形。

(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?再把展开的纸板复原为包装,体会立体图形与平面图形的关系。

三、课堂小结

1.本节课认识了一些常见的立体图形和平面图形。

2.一个立体图形从不同方向看,可以是一个平面图形;可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换。

注:小结可采取师生互动的方式进行,由学生归纳,教师进行评价、补充。

四、作业布置

1.课本第123页至第124页习题4.1第1~6题。

2.选用课时作业设计。

课时作业设计

一、填空题。

1.如下图所示,这些物体所对应的立体图形分别是:___________.

二、选择题。

2.如下图所示,每个图片都是由6个大小相同的正方形组成的,其中不能折成正方体的是( ).

A B C D

3.如下图所示,经过折叠能围成一个棱柱的是( ).

A.①② B.①③ C.①④ D.②④

三、解答题。

4.桌上放着一个圆柱和一个长方体[如下图(1)],请说出下列三幅图[如下图(2)]分别是从哪个方向看到的。

5.如下图,用4个小正方体搭成一个几何体,分别画出从正面、左面和上面看该几何体所得的平面图形。

6.如下图,动手制作:用纸板按图画线(长度单位是mm),沿虚线剪开,做成一个像装墨水瓶纸盒那样的长方体模型。

答案:

一、1.正方体、圆柱、圆锥、球、棱柱

二、2.C 3.D

三、4.分别是从左面、上面和正面看到的。 5~6.略

北师大版数学四年级上册教案 篇2

教学目标:

1.通过复习,牢记所有公式。

2.通过复习,发现学生以前知识中的问题,及时改正。

3.通过复习,建立知识之间的联系和区别,形成知识网络。

重点难点:

通过复习发现学生以前知识中的问题,及时帮助学生纠正,加深记忆教学目标

一、复习公式。

师:想一想你都学习过哪些运算定律和性质?

1.加法交换律:a+b=b+a

两个加数交换位置,和不变,这叫做加法交换律。

2.加法结合律;(a+b)+c=a+(b+c)

先把前两个数相加或者先把后两个数相加,和不变,这叫做加法结合律。

3.乘法交换律:a×b=b×a

交换两个因数的位置,积不变,这叫做乘法交换律。

4.乘法结合律:(a×b)×c=a×(b×c)或a×b×c=a×(b×c)

先把前两个数相乘或者先把后两个数相乘,积不变,这叫做和乘法结合律。

5.乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c

乘法分配律的逆运用:a×c+a×b=(a+b)×c或a×c-b×c=(a-b)×c

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

6.减法不变性质 :一个数减去两个数,等于第一个数减去后两个数的和。 a-b-c=a-(b+c)

7.商不变性质:被除数和除数同时乘或除以相同的倍数(零除外),商不变。a÷b=(a×c)÷(b×c)=(a÷c)÷(b÷c) (c≠0)(b≠0)

8.一个数减去两个数的差,等于先减去第一个数,再加上第二数,即:a-(b-c)=a-b+c

9.某个数先减去第一个数,再加上第二个数,等于某数减去这两个数的差:a-b+c=a-(b-c)

二、总结

这些定律和性质,大都可以推广,

加法交换律结合律:推广到多个数相加。

乘法交换律结合律:推广到多个数相乘。

乘法分配律:推广到几个数的和或差乘以(或除以)一个数。

请同学们再记一下公式。

三、解题思路。

公式记熟了,遇到简算题,选择合适的方法是关键。(板书:方法是关键)

一般来说,连加算式中,应用加法交换律和结合律;连乘算式中;应用乘法交换律和结合津;在除法算式中,应用商不变性质;连减或加减混合算式中,应用减法的性质。

四、巩固练习

1.判断下面简算各题是否正确。

(1)99×4.4 (2)45÷2.5

=(100+1)×4.4 =(45×4)×(2.5×4)

=100×4.4+1×4.4 =180×10

=440+4.4 =1800

=444.4

(3)25×(0.4×9)

=25×0.4+25×9

=10+225

=235

2.用简便方法计算下面各题。

(1)13÷2.5 (2)3.2×12.5×25

(3)(44×4)×25 (4)999×9

教学反思

这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,相互探讨。在这个过程中,学生完全是学习的主人,而教师只是辅助性的导,包括后面例题的教学都充分体现了这一理念。本堂课学生的学习兴趣和学习自信都充分地得到了激发。

北师大版数学四年级上册教案

北师大版五年级上册数学期末试卷 篇3

一、填空题。

1、3.27×4.6的积有( )位小数,3.84÷0.06的商的位是( )位。

2、3.24吨=( )千克

4小时18分=( )小时

23公顷=( )平方米

60078平方米=( )平方千米

1.87平方分米=( )平方厘米

350000平方米=( )公顷

42.56平方分米=( )平方分米=( )平方厘米

3、甲数是56.2比乙数多4.8, 甲乙两数的和是( )。

4、在0. 0.31 0. 0. 这四个数中的是( ),最小的是( )。

5、在0.125 0.25 0.375 0.5 ……这一列数中第八个数是( )。

6、一段路长a米,小明每分钟走 米,走了4分钟,还剩( )米。

7、写有数字1—7的7张卡片,任意抽出一张,抽到6的可能性是( ),抽到单数的可能性是( ),抽到双数的可能性是( )。

8、两个因数的积是5.24,如果一个因数扩大10倍,而另一个因数缩小100倍,那么积应为( )。

9、一组数:31、40、38、45、50,它们的平均数是( ),中位数是( )。

10、一个平行四边形的面积是72平方厘米,与它等底等高的三角形的底是18厘米, 则三角形的面积是( )。

二、判断题。

1、真分数一定小于1,假分数一定大于1。 ( )

2、两个面积相等的梯形一定可以拼成一个平行四边形。 ( )

3、一个分数分子、分母都加上或都减去同一个数,分数的大小不变。( )

4、1千克西红柿用去 和用去 千克,剩下的一样多。 ( )

5、8.9×0.99=8.9-8.9×0.01 ( )

6、分数的分子和分母都乘或除以相同的数,分数的大小不变。 ( )

7、两个完全一样的梯形一定可以拼成一个平行四边形。 ( )

8、平行四边形的面积是三角形面积的2倍。 ( )

9、面积相等的两个三角形一定是等底等高的。 ( )

10、一个三角形的面积是56平方厘米,底是8厘米,那么高是7厘米。( )

三、选择题。

1、一组积木摆成一个图形,从正面看是 ,从侧面看是 ,这组积木有( )。

A、4个 B、6个 C、最少4个 D、最多6个 2、把一个木条钉成平行四边形并且拉成一个长方形,它的面积( )。

A、不变 B、变大 C、变小 D、无法确定 3、45.62÷3.8的商是12,余数是( )。

A、2 B、0.2 C、0.02 4、一个三位数,百位上的数是最小的奇数,十位上的数是最小合数,个位上的数是最小的自然数,这个数是( )。

A.120 B.431 C.140

四、计算。

1、直接写出得数。

2.8÷0.2= 3.9÷0.01= 0.2×7×0.5= 1.2×0.5= 88÷0.22=

1.1×1.1= 0.32×5= 1.8÷0.3= 3.2-0.1= 0.27÷0.03=

2.5-2.5÷5= 0.03×2.3= 1.8×20= 0.01÷0.1=

6.5×10= 80×0.3= 5.1÷0.3=

2、用简便方法计算。

5.5×8.2+1.8×5.5 0.25×0.89×4 4.8×0.98 8.8×1.25 7.65÷0.85+1.123.4÷5.2×3.2 0.125×32×25 15.4×1.7+9.3×15.4-15.4 4.28×34.5+3.45×57.2

3、解方程。

17.5-0.5 =12.7 5.6 =17.28-4 34+3 =46

五、应用题。

1、某工厂3天共节约煤8.4吨,照这样计算,再工作5天,共可节约煤多少吨?

2、学校举行书画竞赛,四、五年级共有75人获奖。其中五年级获奖人数是四年级 的1.5倍,四、五年级各有多少人获奖?

3、火车提速后每小时行驶168千米,比提速前的速度的2倍还多6千米。提速前火车每小时行多少千米?

4、甲乙两辆汽车同时从相距255千米的两地相对开出,甲车每小时行52千米,乙车每小时行57千米,经过几小时后两车还相距37千米?

五年级数学上册教案 篇4

活动目的:

活动的最终目标:出一本《成长的足迹》记录册。记录自己的学习生活,其中以上学后的内容为主。书中包括:封面、序言、图片、习作、书画作品、摄影作品、荣誉等内容。成长报告册是记录学生成长的足迹,成果的积累,反思,回忆的重要工具。它既重过程,又重发展;既重引导,又重评价。激励学生积极、主动的参与的过程,促进自己不断的发展。

活动形式:

收集、实践、操作,整理

活动准备:

空白册一本,学生平日里的照片,证书,特色的作品。

活动过程:

1、明确要求:

向学生提出活动的最终目标:出一本《成长的足迹》记录册。记录自己的学习生活,其中以上学后的内容为主。

2、资料搜集:

①我们这本《成长的足迹》里面的需要一些文字内容和图片资料。文字包括自己的习作、日记、片段等。图片资料包括同学们的书画作品、摄影作品、你的生活照等。而这些作品可以是大家在小学中的你最满意的作品,再邀请你的同学、师长帮你指点。

②把收集的所有作品集体挑选优秀作品自己编入《成长的足迹》之中。

3、分类整理:

对这本书的栏目的设置。可以设童年足迹、五彩的。世界、我们的荣誉,我的作品等栏目。(童年:童年中的学习生活的照片;五彩的世界:书画摄影作品;我们的荣誉:大家过去所得到的荣誉。)

4、交流修改:

初稿出来以后相互交流欣赏,再请师长、家长等一起征求意见,以便把记录册建得更趋完美。

活动建议:

1、召开家长会,为每位家长和孩子介绍讲解报告册的作用及制作的须知。

2、由于学生的年龄小,必须得到家长的鼎力支持,争取家长的支持。

3、经常展示让学生之间互相学习,不断完善,在过程中不断补充,记录自己的足迹。

北师大版五年级上册数学教案 篇5

教学内容:

教材第27~28页的内容及练习。

教学目标:

1、借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2、掌握一个数除以分数的计算方法,并能正确计算。

3、培养学生解决简单实际问题的能力。

教学重难点:

1、掌握一个数除以分数的计算方法,并能正确计算。

2、整数除以分数的计算法则推导过程。

教学过程:

一、创设情景 激趣揭题

1、猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

设计意图:设疑激趣。 明确目标。

二、扶放结合 探究新知

1、分一分,引导感知一个数除以分数的意义。

2、画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

3、引导完成28页的填一填,想一想,你发现了什么?

4、引导归纳计算方法。

设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。

三、反馈矫正

出示P28的试一试。

1、统一分数除法的计算法则。

2、指导完成P28练一练的1~4题。

四、小结评价 布置预习

1、引导小结:通过这节课的学习,你有什么收获?

4÷1/2=4×2=8 ;4÷1/4=4×4=16

一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

北师大五年级数学上册教案 篇6

教学内容:

教材P2~3例1、例2及练习一第1、2、3题。

教学目标:

知识与技能:使学生理解并掌握小数乘以整数的计算方法及算理。

过程与方法:经历将小数乘整数转化为整数乘整数的过程,使学生认识到转化的方法是学习新知识的工具。

情感、态度与价值观:感受小数乘法在生活中的广泛应用。

教学重点:

理解并掌握小数乘整数的算理,学会转化。

教学难点:

能够运用算理进行小数乘整数的计算。

教学方法:

迁移类推,引导发现,自主探索,合作交流。

教学准备:

多媒体。

教学过程

一、情境导入

1.谈话:同学们都喜欢哪些运动呢?

(生回答自己喜欢的运动……)

2.导入:是啊,多参加户外运动,有利于身体健康。老师也经常参加户外运动,放风筝就是我的最爱。下课咱们一起去放风筝好吗?

3.提问:但放风筝之前要先去买风筝,所以咱们就先去买几只风筝吧!(展示教材第2页例l情境图)从图中你知道了哪些信息?

引导学生观察并思考:图中小明他们想买3个3.5元的风筝需要多少钱?你会列式吗?

指学生回答:3.5×3,教师板书:3.5×3。

4.探索:观察这一道算式,它与我们以前学过的乘法算式有什么不同?

生观察后回答:这道算式的因数有小数。

5.揭题:以前我们学习的乘法都是整数乘整数,今天的算式中却出现了小数,这就是今天我们要研究的小数乘整数。(板书课题:小数乘整数)

二、互动新授

1.初步探究竖式计算的方法。

(1)引导学生准确算出一共需要多少钱?学生独立计算,并在小组内交流自己的想法。(师走到学生中,了解学生参与讨论的情况。)

(2)让学生说说自己的想法。

指名汇报,教师根据学生叙述板书,学生可能想出下面几种不同的方法:

方法1:

连加。展示:3.5+3.5+3.5=10.5(元)

师:你是怎么想的?

生:3.5×3就表示3个3.5相加,所以可以用乘法计算。(师板书意义)

方法2:化成元、角、分计算,先算整元,再算整角,最后相加。3元×3=9元,5角×3=1元5角,9元+1元5角=10元5角,即3.5×3=10.5(元)。

方法3:把3.5元看作35角,则35角×3=105角=10.5元。

(3)追问:刚才同学们开动脑筋想出了这么多方法,真了不起。如果要用竖式计算,你会算吗?请同学们想一想,并与同桌讨论:如何列竖式计算3.5×37

引导:出示(边说边演示):

强调:我们可以把3.5元转化成35角,用35角乘3得105角,再把105角转化成10.5元。注意在列竖式时因数的末尾要对齐。

2.自主探究,进一步理解算理,掌握计算方法。

(1)教师出示算式:0.72×5。

师:同学们看0.72不是钱数了,没有元、角、分这样的单位了,还能不能计算出结果呢?请同学们独立思考,然后在小组内交流计算方法。

(2)学生汇报演示。

可能有两种方法:加法和乘法。根据学生的汇报,展示这两种方法。

(3)比较:(见板书设计)

引导:请同学们比较一下这两种方法,你喜欢哪一种呢,为什么?

生:用乘法比较简便。

(4)追问:仔细观察乘法算式,谁给大家解释一下,你是怎样把乘数转化成整数的?

生:先把0.72小数点向右移动2位转化成72×5=360,得出结果后再把积的小数点向左移动两位就是3.6。

质疑:既然把所得积的小数点向左移动两位,那这个积就应该是一个两位小数,为什么现在只有一位呢?

生:小数的末尾添上或去掉0,小数的大小不变,所以积末尾的0可以直接去掉。

(5)注意:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化成整数乘法计算。那么,谁能和大家说说小数乘整数应该怎样计算,计算时应注意什么呢?

指导学生归纳出:计算小数乘整数的乘法,要先把小数看作整数来乘,乘完以后,看因数扩大了多少倍,再把乘出的积缩小相同的倍数。当积的末尾有“O”时,应先点上小数点,再把“0”去掉。

师:(出示教材第2页情境图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。我们看图中还有几种不同的风筝,如果买3个其他形状的,需要多少钱呢?能不能很快地算出来?   学生独立计算,汇报交流。

师:同学们顺利地买完了风筝,那就让我们就一起把风筝放飞吧!

三、巩固拓展

1.教材第3页做一做第1题

想一想:小数乘整数与整数乘整数有什么不同?

2.教材第3页做一做第2题

同桌之间相互谈谈是怎样点小数点的。

3.指名板演教材第3页做一做第3题

4.不用计算,你能直接说出下面算式的结果吗?

148×23=3404   14.8×23=( )   1.48×23=( )   0.148×23=( )   ( )×( )=34.04   四、课堂小结。同学们,这节课你们都学会了哪些知识?(学生自由发表想法)

作业:教材第4页练习练习一第1、2、3题。

板书设计

小数乘整数

求几个相同加数的各的简便运算。

北师大五年级数学上册教案 篇7

教学目标:

1、理解分数、小数相互转化的必要性。

2、能正确地将简单分数、有限小数相互转化。

3、使学生掌握分数化小数的一般方法,掌握最简分数化成有限小数的规律,培养学生观察、比较、判断。归纳的思维能力。

重点难点:

掌握最简分数化成有限小数的规律。

教具准备:

多媒体课件和题卡。

教学过程

一。 导入新课

1.复习。

(1)说说下面小数的意义:

0.2表示( )分之( ),0.75和0.625呢?

(2)把下面的分数化成小数,并说出方法。

1/10 3/100 51/1000

2、激趣引入。

同学们,你们每天都看课外书吗?每天看课外书的时间是多少?(学生自由说,汇报交流。)

这节课,我们就来研究一下看课外书的时间能给我们带来哪些数学问题。(板书:看课外书时间)

二、探究新知

1、课件出示主题图。

下面我们来了解林林和明明每天的看课外书时间。

2、观察主题图,理解图意。

请同学们仔细观察图表,从中你得到了哪些数学信息?(板书:林林0.4时 明明1/4时)

3、提出问题,进行估计。

请同学们估一估,谁用的时间多一些?(板书:谁用的时间多一些?) (估计汇报并说明道理。)

4、解决问题的探索。

同学们有的说林林的多,有的说明明的多,怎样才能精确的比较出谁用的时间多呢?

(1)自主探索。请同学们独立思考并记录下解决过程,你用了什么样的方法进行比较。

(2)合作交流。和小组的同学交流一下自己的比较方法。

(3)全班汇报。哪个小组先来汇报你们的比较方法?(根据学生的汇报,教师进行板书。)

5、课件展示课本中呈现的方法。

老师用课件展示课本上给我们呈现的方法,看不清的请看课本上相应的图。注意对照你们探索出来的方法,哪些方法是与你们相似的,哪些方法是没有想到的。(每展示一幅图时指名学生说说比较的方法)

6、讨论并归纳分数、小数的互化方法。

<1>分数化成小数

(1)做课本上的试一试第2题。(独立练习)

(2)请同学们讨论并归纳出分数化成小数的基本方法是什么?(小组讨论全班汇报课件展示)

<2> 小数化成分数

(1)做课本上的试一试第1题。(独立练习集体订正,教师板书)

(2)请同学们讨论并归纳出小数化成分数的基本方法是什么?(小组讨论全班汇报课件展示)

三、巩固练习

1、把下面的分数化成小数,把小数化成分数。(课件出示练习题)

17/20 7/8 14/ 25 0.57 1.23 7.4

2、比较下面数的大小。(课件出示练习题)

2/3 , 0.67 , 5/8

3、 把3/4 5/14 13/40 5/6化成小数,你发现了什么?

怎样解决?

(1)引导学生观察:每个分数所化成的小数,是什么样的小数?每个分数的分母与这个分数所化成的小数有什么联系?

(2)学生把每个分数的分母分解质因数。

(3)观察质因数,启发学生想一想:什么样的分数能化成有限小数?什么样的分数不能化成有限小数?

(4)引导学生概括。

四、课堂小结

1、通过这节课的学习你有哪些收获?(分数、小数的互化)

2、进行分数、小数的互化时有什么要注意的?(如,分数化成小数除不尽时,要;小数化成分数不是最简分数时,要)

五、实践活动

请同学们在自己周围寻找用分数或小数表示的信息,将寻找到的信息与同学进行交流。