首页 > 工作文档 > 总结报告 > 工作总结 > 函数性质知识点总结优秀4篇正文

《函数性质知识点总结优秀4篇》

时间:

函数是高中数学中比较重要的课程内容,也贯穿了整个高中数学的学习。那么,为大家精心整理了函数性质知识点总结优秀4篇,在大家参照的同时,也可以分享一下给您最好的朋友。

二次函数图像性质总结 篇1

函数奇偶性知识点总结

函数奇偶性知识点总结

指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。

可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的。位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

注图:(1)为奇函数(2)为偶函数

1、定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

2、奇偶函数图像的特征:

定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

f(x)为奇函数《==》f(x)的图像关于原点对称

点(x,y)(—x,—y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

3、奇偶函数运算

(1)、两个偶函数相加所得的和为偶函数。

(2)、两个奇函数相加所得的和为奇函数。

(3)、一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。

(4)、两个偶函数相乘所得的积为偶函数。

(5)、两个奇函数相乘所得的积为偶函数。

(6)、一个偶函数与一个奇函数相乘所得的积为奇函数。

高一函数的性质知识点小结 篇2

图像及其性质:反比例函数的图象是双曲线,无限延伸但不与坐标轴相交。

当k>0时,双曲线的`两支分别位于第一、三象限,在每个象限内y随x的增大而减小;

当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y随x的增大而增大。

待定系数法确定函数解析式:对于反比例函数,只要知道图象上任意一点的坐标,就可以用待定系数法确定函数解析式,即先设出函数解析式,然后将点的坐标代入确定系数k的值。

高一函数的性质知识点 篇3

性质

性质一:对称性

数轴对称:所谓数轴对称也就是说函数图像关于坐标轴X和Y轴对称。

原点对称:同样,这样的对称是指图像关于原点对称,原点两侧,距离原点相同的函数上点的坐标的坐标值互为相反数。

关于一点对称:这种类型和原点对称颇为相近,不同的是此时对称点不再仅限于原点,而是坐标轴上的任意一点。

性质二:周期性

所谓周期性也就是说,函数在一部分区域内的图像是重复出现的,假设一个函数F(X)是周期函数,那么存在一个实数T,当定义域内的。X都加上或者减去T的整数倍时,X所对应的Y不变,那么可以说T是该函数的周期,如果T的绝对值达到最小,则称之为最小周期。

函数性质知识点总结 篇4

一。高一函数的性质知识点

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数。区间称为y=f(x)的单调减区间。

注意:函数的单调性是函数的局部性质;

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。

(3).函数单调区间与单调性的判定方法

(A) 定义法:

1 任取x1,x2∈D,且x1

2 作差f(x1)-f(x2); ○

3 变形(通常是因式分解和配方); ○

4 定号(即判断差f(x1)-f(x2)的正负); ○

5 下结论(指出函数f(x)在给定的区间D上的单调性). ○

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集。

8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数。

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数。

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称。

利用定义判断函数奇偶性的步骤:

1首先确定函数的定义域,并判断其是否关于原点对称; ○

2确定f(-x)与f(x)的关系; ○

3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是○

偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数。

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件。首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数。若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

二。基本性质知识点

(1) 定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的集合 C ,叫做函数 y=f(x),(x ∈A)的图象。

C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的'每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 . 即记为 C={ P(x,y) | y= f(x) , x ∈A }

图象 C 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .

(2) 画法

A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点 P(x, y) ,最后用平滑的曲线将这些点连接起来 .

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3) 作用:

1 、直观的看出函数的性质; 2 、利用数形结合的方法分析解题的思路。提高解题的速度。