《高中立体几何知识点总结汇总三篇》
高中立体几何知识点总结(精选3篇)
高中立体几何知识点总结 篇1
必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。
选修课程分为4个系列:
系列1:2个模块
选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修1-2:统计案例、推理与证明、数系的扩充与复数、框图
系列2:3个模块
选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何
选修2-2:导数及其应用、推理与证明、数系的扩充与复数
选修2-3:计数原理、随机变量及其分布列、统计案例
选修4-1:几何证明选讲
选修4-4:坐标系与参数方程
选修4-5:不等式选讲
2.重难点及其考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数。
难点:函数,圆锥曲线。
高考相关考点:
1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件。
2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用。
3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和。
4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用。
5.平面向量:初等运算、坐标运算、数量积及其应用。
6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用。
7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系。
8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用。
9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量。
10.排列、组合和概率:排列、组合应用题、二项式定理及其应用。
11.概率与统计:概率、分布列、期望、方差、抽样、正态分布。
12.导数:导数的概念、求导、导数的应用。
13.复数:复数的概念与运算。
高中立体几何知识点总结 篇2
平面
通常用一个平行四边形来表示。
平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC。
在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:
a) A∈l—点A在直线l上;Aα—点A不在平面α内;
b) lα—直线l在平面α内;
c) aα—直线a不在平面α内;
d) l∩m=A—直线l与直线m相交于A点;
e) α∩l=A—平面α与直线l交于A点;
f) α∩β=l—平面α与平面β相交于直线l。
平面的基本性质
公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内;
公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线;
公理3经过不在同一直线上的三个点,有且只有一个平面。
根据上面的公理,可得以下推论,
推论1经过一条直线和这条直线外一点,有且只有一个平面;
推论2经过两条相交直线,有且只有一个平面。
推论3经过两条平行直线,有且只有一个平面。
公理4平行于同一条直线的两条直线互相平行。
拓展阅读:高中数学立体几何解题技巧
1.平行、垂直位置关系的论证的策略:
(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2.空间角的计算方法与技巧:
主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角①平移法:②补形法:③向量法:
(2)直线和平面所成的角
①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算。
(3)二面角
①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:
(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。
3.空间距离的计算方法与技巧:
(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
高中立体几何知识点总结 篇3
点在线面用属于,线在面内用包含。四个公理是基础,推证演算巧周旋。
空间之中两条线,平行相交和异面。线线平行同方向,等角定理进空间。
判定线和面平行,面中找条平行线。已知线与面平行,过线作面找交线。
要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。
已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。
判定线和面垂直,线垂面中两交线。两线垂直同一面,相互平行共伸展。
两面垂直同一线,一面平行另一面。要让面与面垂直,面过另面一垂线。
面面垂直成直角,线面垂直记心间。
一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。
空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。
引进向量新工具,计算证明开新篇。空间建系求坐标,向量运算更简便。
知识创新无止境,学问思辨勇攀登。
多面体和旋转体,上述内容的延续。扮演载体新角色,位置关系全在里。
算面积来求体积,基本公式是依据。规则形体用公式,非规形体靠化归。
展开分割好办法,化难为易新天地。