《高三数学年度总结【合集28篇】》
高三数学年度总结(精选28篇)
高三数学年度总结 篇1
本学期我担任高三两个班的数学教学工作,经过一个学期的努力,两个班在前几次月考中都取得了比较好的成绩。高三的学习是紧张的,一学期的时光过得很快,回顾这一学期的工作,我主要从以下几个方面对本学期教学工作情况作如下总结:
1、备课:研读考纲,梳理知识。根据课标要求,提前备好课,写好教案。备课时认真钻研教材、教参,学习好大纲,虚心向同年组老师学习、请教。力求吃透教材,找准重点、难点。积极参加教研室组织的教研活动,老教师的指导和帮助下进行集体备课,仔细听,认真记,领会精神实质。
2、上课:重视课本,狠抓基础,构建学生的良好知识结构和认知结构。上好课的前提是做好课前准备。上课时认真讲课,力求抓住重点,突破难点,精讲精练。运用多种教学方法,从学生的.实际出发,注意调动学生学习的积极性和创造性思维,使学生有举一反三的能力。课间巡视时,注意对学困生进行面对面的辅导,课后及时做课后记,找出不足。
3、辅导:精心选题,针对性讲评。
利用课余时间对学生进行辅导,不明白的耐心讲解,教给他们好的记忆方法,好的学习习惯,做到对所学知识巩固复习,及时查缺补漏。
4、作业:狠抓常规,强化落实与检查。
认真布置、批改作业。在教学中布置作业要有层次性,针对性。并认真批改作业,做到有质量全批,在作业过程出现不同问题及时作出分类总结并记载下来,课前分析讲解。并针对有关情况及时改进教学方法,做到有的放矢。由于高三的课业负担较重,1我只布置适量作业,利用好订的学案,且作业总是经过精心地挑选,适当地留一些有利于学生能力发展的、发挥主动性和创造性的作业。
5、个人学习:充分发挥集体备课的优势,积极学习其他教师的各种教育理论,以充实自己,以便在工作中以坚实的理论作为指导,更好地进行教育教学。坚持每周集体备课,认真听课,探讨课堂优化教学,有时探讨专题,群策群力,并主要做法:
(1)每周每位教师轮流出一套滚动试题;
(2)每周至少小测一次;
(3)每月或每单元大测一次;
(4)每次月考组织高三综合测评一次;
(5)总结,反思。
以上是我这学期的工作总结,还有很多需要完善和改进的地方,我将继续努力,虚心求教,争取下学期取得更圆满的成绩。
高三数学年度总结 篇2
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,则有>1?;=1?;<1?.
概括为:作差法,作商法,中间量法等.
3.不等式的性质
(1)对称性:a>b?;
(2)传递性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可开方:a>b>0?(n∈N,n≥2).
复习指导
1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
3.“两条常用性质”
(1)倒数性质:①a>b,ab>0?<;②a<0
③a>b>0,0;④0
(2)若a>b>0,m>0,则
①真分数的性质:<;>(b-m>0);
②假分数的性质:>;<(b-m>0).
高三数学年度总结 篇3
高三上册数学知识点整理
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
人教版高三数学知识点总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式(组)
②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
③用数轴表示一元一次不等式(组)的解集
高三数学年度总结 篇4
你们不要老提我,我算什么超人,是大家同心协力的结果。我身边有300员虎将,其中100人是外国人,200人是年富力强的香港人。—x年度上学期期末高三数学备课组工作总结在全体高三数学组老师的共同努力下我们圆满完成本学期的教育、教学也取得了一些成绩例如
统考成绩和区前一名在大幅度缩小理科数学名次提前了一名等现总结如下:
一、制定切实可行的计划并且一定要按照计划严格执行计划的安排进行复习
俗话说;凡事不预而不立。我说的切实可行的意思是计划要细致具体严格。一定要遵循计划的安排走。大家知道高三的复习其实不止我们数学这一科其他的学科也在内都是时间紧任务重要在有限的时间完成可以说是无限的复习内容不精心作以安排在复习中势必出现忙乱的现象也会容易出现顾此失彼的后果。在开学伊始我们全组高三数学组老师就制定出一份时间上、具体到每章每节要用多少课时的不至于流于形式的严格计划,在计划中不但要考虑教学内容的多少还要考虑在高考中占有的比重更要顾及哪些内容是我们值得付出时间和精力的等等一系列因素。使得大家在时间上有了紧迫感使得我们的教学内容更加有效率使得我们更能发挥积极性去充分地调动学生。
二、认真研究考试大纲重视基础
注重数学学科的思想渗透强化能力的培养。给学生科学合理适于接受的数学学习建议。一年一度的.《考试大纲》反映了命题的方向作为我本人哪一年担任高三课我都会研读考纲。这样不但可以从宏观上掌握考试内容做到复习不超纲;而且可以从微观上细心推敲对众多考点的不同要求分清哪些内容只要一般理解哪些内容应重点掌握哪些知识又要求灵活运用和综合运用复习中要结合课本对照《考试大纲》把知识点从整体上再理一遍既有横向串联又有纵向并联在教学中我也大胆的指导和建议老师们力争不要做太多无用功。有些内容就得敢于大胆的取舍因为题永远是讲不完也是做不完的在时间紧张的情况下我们一方面要稳住阵脚;一方面又不要给学生带来急躁的情绪。从今年的《考试大纲》看总体要求保持平稳,并在平稳过渡当中强调了试题设计的创新程度。
大纲要求试题难度更加符合教学的实际与高中学生学习的实际水平特别值得关注的是三角函数、立体几何两个模块的具体要求明显地降低了三角函数知识作为解题的工具没必要学习得那么深、那么难在立体几何的备考方面考生一般有求难的趋向这显然也是不必要的。因此在复习中加强基础知识的巩固和提高加强各知识板块间的联系和综合加强通性通法的总结和运用重视教材:
狠抓基础是根本;
立足中低档降低重心是策略;
过程中发展能力提高素质是核心
记得在开学初的大教研中,我们数学的所有老师展开了对各年高考试题的研讨大家的一致意见就是狠抓基础立足中档题,在复习过程中我们经常提醒学生多回顾课本、成立学习笔记和纠错本浓缩所学知识熟练掌握解题方法加快解题速度缩短遗忘周期,达到复习巩固提高的效果,以提高知识与能力的综合性、应用性、创新性为重点比如开始复习的内容是高考中的重中之重学生已经扔了两年的时间,而且是最抽象的刚上高中时掌握的就很最薄弱。这样我们就充分调动学生立足课本浏览以前的课堂笔记激活所有数学知识点。既给了学生自主学习的空间也为学生树立了备战高考的信心。以重点知识再复习为主,高三这一年的复习备考中我们一直采取段段清紧紧跟的原则。
所谓段段清就是复习完一个章节即时考查力求不留知识死角使得基础复习更完备知识脉络更清晰,所谓紧紧跟就是复习完这一章再连同前面复习的所有的内容一起再考一次,及时的巩固缩短了遗忘周期。在集体教研选择教学题目时尤其注重:
(1)强调知识的综合性及不同章节的内在联系;
(2)不断渗透重要的数学思想与方法
如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想方法;转化与划归的思想方法;运动与变换的思想方法等不断在复习过程中渗透;
(3)强化数学思维训练体现多一点,想少一点算或不急于算。也就是我们曾经说的:磨刀不费砍材功。
(4)反思解答问题时的开窍点优化解题时思维线路熟练解答问题的通性通法强化解答综合性数学高考试题的一般思维模式,就能不断提高综合分析问题和解决问题的能力。在二轮复习过程中我们基本采用了以学生为主体的练讲结合把所有的题目都让学生独立的完成然后有老师点评点播。达到精讲精练的目的也使学生不在题海中泛滥而是在规律和方法中寻求触类旁通举一反三游刃有余的学习境界。
三、精诚合作互相学习和谐共建奋战高考。
由于工作的安排我本人担任理科班的教学进度往往和文科不能保持一致这样在复习材料的准备上就要靠大家。在这里我们组里从来没有因为我不能及时准备材料而计较过有了什么想法有了什么建议教研时出现了什么点子,事后大家都能主动积极的查找材料。
四、一些比较好的做法:
1、每周小测至少一次;
2、每月或每单元须大测;
3、每周假期作业发滚动试题一份;
4、强调先练后讲及时订正
紧张而繁重的高三复习备考还没有画上了句号我们还须在奋战的大潮中一起披风展浪一起持舵前行,尽管我们不能成为最领先的弄潮儿但因为我们在尽心我们更在尽力,我们可以自豪的说;我们无悔。
全体高三数学组老师
高三数学年度总结 篇5
xx年是高考中实施新课程的第一年。高考已结束,一切在情理之中,一切又在探索之中,我们学校也取得了一定的成绩,回顾一年来走过的脚印,依然历历在目。从高三数学备考第一天开始,根据过去的实践经验,心理很清楚该怎么做,同时也知道这一仗一定是很艰苦的,很多事情没有完全反应过来,就卷入了备考激流中,没有退路,只能是随流勇进。
面对文科生的数学基础,我们只能是一方面延长第一轮复习时间,减少专题复习,另一方面降低所学内容难度。但这样做只能是捉襟见肘,月月有月考,周周有综合练习,很多学生在这种枪林弹雨的日子里,早就伤痕累累,寸步难行。没办法我们只能步步前进,希望能出成绩。
我们具体的做法是:
第一轮单元复习(从20xx年10月——20xx年3)。第一轮复习是基础,是学生高考成功的关键。我们制定的目标是“全面、细致、扎实,注意基础知识落实,”具体策略是“高度重视,以熟悉教材为中心,坚持归纳和反思,坚持训练和解题。”落实好每一个知识点,提高解题能力,讲完每一章节内容后,有小结,有测验,有评讲,有提高。全面细致的第一轮复习起到了明显效果。
第二轮专题复习(20xx年4月——5月)。确立的指导思想是“重视知识体系的构建和能力的提升”。从第二轮复习开始,我们穿插进行选择题、填空题和解答题专项训练,。解填空题的基本要求是“正确、合理、迅速”。“合理是前提”,“迅速是基础”,“正确是根本”。迅速的基础是:概念清楚,推理明白,运算熟练,合理跳步,方法灵活。因此,要在“准”、“巧”、“快”上下功夫。让学生掌握解选择题常用方法特例法,筛选法,代入法,图解法
第三轮冲刺复习(20xx年5月——6月)。我们提出了“调整(心态)、巩固(基础)、充实(薄漏)、提高(能力)”的八字方针,对学生指导性极强,整合了各地的复习资料,结合个人心得,同时要求学生对试卷进行错题收集和归类整理,这也是一种很有效的复习方式。
最后的十天冲刺复习,我们给学生提出了灵感复习法,要求“回归基础,回
归教材”。抓好两条复习主线,一方面是对照考纲看教材,注重基础知识;另一方面是对照试卷看题目,查漏补缺,以适度紧张的平常心、饱满的精神状态和强烈的自信心,搞好后面10天的灵感复习。
经过一年的努力,在今年的高考中取得了不错的成绩,那只能代表过去,正所谓“战斗正未有穷期”,面临着下一年的高考,我们需要进行新的学习和接受新的挑战。我们有决心也有信心,一如既往的努力,争取新的成绩!
高考虽然结束,却留下一些存在的问题引起我们深思:
1、我们是首届使用新教材,对教材的把握和知识内容体系的.“度”的控制,以及教学进度的掌握均存在一定的缺憾。导致学生基础知识遗忘率高,教师教的辛苦学生学的也累。
2、学校的两条线复习①学生自主复习;②教师复习安排,并轨进行这是科学的。但是大多数学生还不是很配合。
3、我们的复习强度够不够?
4、讲、练、批、评的比例是否安排恰当吗?
5、对差生的积极性有没有完全调动起来?对非智力因素挖掘得够不够?
高三数学年度总结 篇6
1.数列的定义、分类与通项公式
(1)数列的定义:
①数列:按照一定顺序排列的一列数.
②数列的项:数列中的每一个数.
(2)数列的分类:
分类标准类型满足条件
项数有穷数列项数有限
无穷数列项数无限
项与项间的大小关系递增数列an+1>an其中n∈N_
递减数列an+1
常数列an+1=an
(3)数列的通项公式:
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
2.数列的递推公式
如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.
3.对数列概念的理解
(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.
(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.
4.数列的函数特征
数列是一个定义域为正整数集N_(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_).
高三数学年度总结 篇7
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2p_=2pyx2=-2py
直棱柱侧面积S=c_斜棱柱侧面积S=c'_
正棱锥侧面积S=1/2c_'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_2
圆柱侧面积S=c_=2pi_圆锥侧面积S=1/2__=pi__
弧长公式l=a_a是圆心角的弧度数r>0扇形面积公式s=1/2__
锥体体积公式V=1/3__圆锥体体积公式V=1/3_i_2h
斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=s_圆柱体V=p_2h
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1_2=c/a注:韦达定理
判别式
b2-4ac=0注:方程有两个相等的实根
b2-4ac>0注:方程有两个不等的实根
b2-4ac<0注:方程没有实根,有共轭复数根
高三数学年度总结 篇8
必修一
第一章:集合和函数的基本概念
这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。
还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数
——指数、对数、幂函数三大函数的运算性质及图像
函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。
第三章:函数的应用
这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。
必修二
第一章:空间几何
三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。
在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。
第二章:点、直线、平面之间的位置关系
这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。
关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。
第三章:直线与方程
这一章主要讲斜率与直线的位置关系,只要搞清楚直线平行、垂直的斜率表示问题就错不了。需要注意的是当直线垂直时斜率不存在的情况是考试中的常考点。另外直线方程的几种形式所涉及到的一般公式,会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,只要直接套用公式就行,没什么难点。
第四章:圆与方程
能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。
必修三
总的来说这一本书难度不大,只是比较繁琐,需要有耐心的去画图去计算。
程序框图与三种算法语句的结合,及框图的算法表示,不要用常规的语言来理解,否则你会在这样的题型中栽跟头。
秦九韶算法是重点,要牢记算法的公式。
统计就是对一堆数据的处理,考试也是以计算为主,会从条形图中计算出中位数等数字特征,对于回归问题,只要记住公式,也就是个计算问题。
概率,主要就只几何概型、古典概型。几何概型只要会找表示所求事件的长度面积等,古典概型只要能表示出全部事件就可以。
必修四
第一章:三角函数
考试必在这一块出题,且题量不小!诱导公式和基本三角函数图像的一些性质,没有太大难度,只要会画图就行。难度都在三角函数形函数的振幅、频率、周期、相位、初相上,及根据最值计算A、B的值和周期,及恒等变化时的图像及性质变化,这部分的知识点内容较多,需要多花时间,不要再定义上死扣,要从图像和例题入手。
第二章:平面向量
向量的运算性质及三角形法则、平行四边形法则的难度都不大,只要在计算的时候记住要“同起点的向量”这一条就OK了。向量共线和垂直的数学表达,是计算当中经常用到的公式。向量的共线定理、基本定理、数量积公式。分点坐标公式是重点内容,也是难点内容,要花心思记忆。
第三章:三角恒等变换
这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。
必修五
第一章:解三角形
掌握正弦、余弦公式及其变式、推论、三角面积公式即可。
第二章:数列
等差、等比数列的通项公式、前n项及一些性质常出现于填空、解答题中,这部分内容学起来比较简单,但考验对其推导、计算、活用的层面较深,因此要仔细。考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。
第三章:不等式
这一章一般用线性规划的形式来考察学生,这种题通常是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图,然后再根据实际问题的限制要求来求最值。
高三数学年度总结 篇9
一、努力提高课的质量,追求复习的最大效益
1、认真学习新课改的考试说明和考试纲要,严格执行课程计划,确保教学进度的严肃性、高三年级在明确学期教学计划的基础上,本学期以来经常进行备课组群众备课,教学案一体化,将长计划和短安排有机结合,既体现了学期教学的连贯性,又体现了阶段教学的灵活性。
2、准确定位复习难度,提高课堂复习的针对性。我们把临界生这个群体作为高考复习的主要对象,根据临界生的知识结构,潜力层次来设计课堂教学,不片面地追求"高,难,尖",而是在夯实基础的前提下,逐步提高潜力要求,从而突出重点,突破难点。
3、不断优化课堂结构,力促课堂质量的有效性。首先,针对复习课特点,明确复习思路,构建了二轮复习"四合一"的课堂模式:潜力训练+试卷讲评+整理消化+纠错巩固。潜力训练做到在一轮复习的基础上,排查出学生的考点缺陷,有针对性地进行强化训练;试卷讲评做到在错误率统计和错误原因分析的基础上进行讲评,讲评的对象明确定位为中转优学生,评讲效果的衡量标准就是看中转优学生有没有真正搞懂;整理消化首先确保各学科当堂消化的时间;错误率较高的题目在必须的时间长度内,以变形的形式进行纠错巩固训练,同时在周练中予以体现、
二、让学生切实做好题,发挥训练的最大功能
1、实行"下水上岸"制,提高练习质量。"下水"是为了"上岸",教师做题是为了选题。为此,本人对给学生做的题目自己先过一遍,加强对选题的工作,练习材料没有照搬现成资料,同时整个年段的题目是备课组群众研讨而成;要先改造,后使用,力求做到选题精当,贴合学情。
2、有效监控训练过程,确保训练效度、训练上个性重视训练的计划性,明确每周训练计划、认真统计分析,对于重点学生更是面批到位、指导学生进行自我纠错,并定期进行纠错训练、此外,对考试这一环节,严格考试流程,狠抓考风考纪,重视考试心理的调适,答题规范化的指导和应试技能的培养,努力消除非智力因素失分。及时认真地做好每次考试的质量分析,并使分析结果迅速,直接地指导后面的复习工作。
3、强化基础过关,实施分层推进、针对学生基础相对薄弱的现状,实施基础题过关的方法,在夯实基础的前提下,实验班适当提升训练难度,同时实行必做题和选做题的分档训练。这一举措对学生成绩的提高取得了良好的效果。
还有很多做得不够的地方,我必须持续谦虚谨慎,戒骄戒躁的作风,在今后的工作中扬长避短,不断进步,不辜负领导和家长们对我的信任,在来年再创佳绩。
高三数学年度总结 篇10
时间过得真快,一眨眼一年一度的高考离我们已过去这么多天了,迎来的又将是20xx届学生的高考复习,回顾过去的一年,我们舞钢一高高三文科在高考中取得了一定的成绩,但更重要的是如何在原有的基础上得到进一步的提高,使我们的数学成绩在明年高考中能更加辉煌,更加灿烂。在展望的同时必须做好总结与反思工作,以下是我在20xx届高考复习中的几点真实做法和总结,仅供老师们指正。
一、复习安排:
我校高考复习目前只能分两轮进行(时间有点紧),第一轮是按复习用书的安排,复习高考主干的基础知识,而且复习一定要到位。复习时一定注意理清知识结构,注重方法与思路的指导,给学生有比较明确的数学框架与解题方向,千万不要含糊不清,马虎从之,这一轮将是致命的,应引起高考重视。第二轮是专题复习,专题复习目标要清晰,主题要明确,选题要精辟,练习要对应精选。在第二轮复习时一定要注重解题方法的指导与灵活应用,选题一定要新颖,有代表性,提高学生的应变能力与适应能力。复习同时穿插综合试卷的训练与分析,提高学生的应试能力。
二、合理应用复习用书:
复习用书是高考第一轮复习的灵魂,那么如何合理地应用复习用书是关键。知识点的梳理与拓宽对文科学生来说一定要重视,而且要重点讲,解决主干知识的方法要归类到位,这样可以在例题讲解时让学生活学活用对应的知识与方法。教师自身只要适当引导就可以了,而且要注意不要把复习用书中的每道例题都照抄照搬地讲,不加筛选,不加改变地讲,这样会让学生对你的课失去兴趣,感觉枯燥乏味,从而降低课堂效率,影响复习课。
三、认真对待“五认真”:
作为一个教师,备课、上课与批改作业是非常重要的环节。备课要备出自己的思想,不要抄其他书籍。上课要上出激情,要有应变能力,要和学生的思想,思维变化迅速融合在一起,进而发展上课进程。批改作业要认真,批改后的统计工作要到位,千万不要少了这个环节,这样能使老师分析问题时重点突出,详略得当,提高分析问题的质量与效率。
四、认真做好积累工作:
在高考复习中“积累”是一项重要的工作,我们作为一个备课组要分工合作,要统一复习资料,分块进行资料搜索与整理,在相同的资料中整理出学生的错题与薄弱的知识点,同时在网上或其它资料上寻找一些新颖题,在第二轮复习时可以给学生查漏补缺,自我反省的机会,同时有进一步提高自己适应新题的能力,这样能使学生在第二轮复习时更好地提高自己。
五、要重视“考试说明”及“考纲”:
我们作为教师重点当然是教书,但如何教书应是一个值得我们反思的一个话题,教师在教书时应该注重“考试说明”及“考纲”的有关说明,一定要做到主干知识重点讲,主要知识要突出其地位,千万不要讲那些已经被删除了的或处于非常边缘的知识,这样既给学生增加压力,又达不到教学目标,是一件非常遗憾的事情。同时要重视每年的高考样卷,他有非常重要的指导作用。
六、要重视学生的解题速度:
高考的竞争很大程度上是学生掌握的数学知识及应用能力的竞争,但同时也是学生解题速度的竞争。如何提高学生的解题速度,训练学生的反应能力也是摆在教师面前的一个问题,各个阶段有意识地去控制学生完成作业的时间,引导学生合理分配考试时间,这两个做法是提高解题速度的两条有效途径。
七、要重视“优等生”的培养:
每个学校都有“优等生”,那么如何培养“数学优等生”是我们数学老师的责任,培养“优等生”我注重两点:一是给这些学生口头上的鼓励,要他们树立对数学的信心。二是给这些学生以行动上的鼓励,给你的“目标”另外做一些难题,提高学生解决中难题的能力,同时给他们以信心上的提升。同时要有效地利用这些有效的“优等生”资源,让他们来发挥真正的作用,让他们来带动整个班级的数学学习氛围,让他们来引领一些“中差生”对数学的兴趣,这样可以提高整个班级的数学成绩。
一年来经过认真、踏实有效的复习我校学生在高考中也取得了一定的成绩,但通过成绩也折射出了我们教学中的还存在一定问题和不足之处!我简单总结如下:
一、文科学生的数学知识基础、数学思维和学习能力都比较差,他们大多是因为理科差采选择文科的。
二、本届学生文科学艺术学生逐渐增多,当然这对学校来说不是什么坏事,但艺术生
和普通考生同坐一个班,普通考生思想上有点动摇:看到他们文化课那么差居然很有希望上好学校,蛊惑学生的思想,并且一般情况下这些学生学习态度也不增么端正!很可能对普通生有一定的影响。
三、有一批高一、高二数学成绩较好的学生进入高三以来进行综合测试训练的成绩不理想,有的甚至很差,究其原因,学了的东西容易忘记,对知识进行简单的运用还可以,只要综合起来运用就束手无策,这些学生只掌握点点滴滴的知识,不能将掌握的知识,串成线,连成片。
四、几乎所有的学生都存在会做的做不对的毛病每次考试结束后,几乎所有的学生都要叹息,这次考试哪些题我只要认真一点,我都能解答正确,不会做的得不了分,这没什么遗叹,会做的总做不对,太感叹了。造成这一现象,究其原因。
1、没有审题题意,只是将题匆匆扫一眼,看到了片言只语,就匆匆下笔做做题。这些人总是担心,若将题意仔细搞清楚,弄明白会耽误时间,影响做题的速度。其实这样做,只会耽误更多的时间,造成更大的损失,题目没看清就下笔,会出现做到中途做不下去的情况,然后再回过头再看题目时,就会发现其中有些关键性语句没看到,
2、在解答过程中有些同学养成了只用眼睛看,不肯动笔的坏习惯,即使动笔,也是偷工减料省略一些关键性的步骤。从而出错,
3、注意力不稳定容易得意忘形,有些学生在草稿纸上明明得出了正确的答案,但填写到答卷上却出错了,这主要是这些学生在草稿纸上演算时能专心至致,获得了正确的结果,就放松了,注意力分散,从而造成了错误。
五、对平时的训练,月考认识不正确。
1、认为考试是老师已折磨学生。
2、对自己缺乏正确的认识和定位每次考试都希望自己能将所有的题做完,都能获得较高的分数,只要有几个做起来不顺手或一时解答不出,就非常焦急,烦燥不安,心慌意乱,从而出现思维混乱,反应迟钝,即便是简单的题也做不起。
3、对做题、考试的目的不明确,每次做题只追求是否正确,做对了就很高兴,越做越有兴趣,做不起,做不对,心里就很烦燥,不愿再继续做下去,每次考试老师发下试卷后只注意分数,而不注意分析错误的原因,不善归纳、总结、反思。
4、缺乏恒心和毅力。在训练中碰到稍难一点的题不愿进行深入的思考,特别是碰到文字叙述较长的题好应用题,正好学生自己所说的,看到文字叙述较长的.题我头都大了,连看都不想看,别说想和做了。
六、阅读理解能力差,进入高三来,我们已做了许多个应用题的训练题,每次这些应用题能动笔不多,能做对更是凤毛麟角,究其原因题目意思看不懂。
七、不会听课,不会做笔记,不会及时复习巩固,消化当天的知识。不能掌握概念的本质属性,导致思维的表面性,忽视定理、公式和法则成立的条件,导致定势思维的消极性,发散思维意识淡薄,观察力,联想能力差,数学应用意识淡薄,数学建模能力差。
八、学生心理素质普遍较差,存在严重的心理问题,学上选择文科的原因一定因素上是因为数学学不会,这样一来看到数学具有一定恐惧感!但是对于文科班渐漏出来个别“优等生”对自己定位不够,幻想自己的数学就是最好的,过高的估计自己!这样以来在高考中跌了脚!
高三数学年度总结 篇11
本学期以来,高三数学备课组全体老师围绕着学校的中心工作,以全面提高学生的思想和文化素养为工作目标,积极开展科组的教学教研活动,努力提高教师的思想素质和业务素质,在认真探讨数学教育的特点,结合新教材和学生的实际情况,努力实施自主学习的教学模式上,做了一些工作,现总结如下进入高三以来,在各级领导的关心和支持下,全体高三数学备课组重视做好三个方面的工作。
一、把握方向,夯实基础
我校学生在数学方面基础显得比较薄弱。针对这一情况,学校领导非常重视,在各种会议上多次就数学的问题作了重要指示,提出了很多关于强化数学学科的具体措施。进入高三以来,数学老师统一了认识,把教学重点放在强调基础知识方面,并且持之以恒,一以贯之。其中我们特别强调学生应该充分利用上课的时间,强调对课本知识的理解,达到积累知识,夯实基础的目的。
二、团结协作,群策群力
高三的复习内容庞杂,容量很大,任务艰巨就显得任务繁重。如果每个老师都各自为阵,只顾自己班级,那就会成为一盘散沙。高考是对学生综合素质的考查,更是对全体教师能力的考查。面对繁重的高考复习任务,个人力量就显得很微弱。因此,形成团结一心,精诚合作的团队精神就显得尤为重要。为此,一年来,我们扎实开展备课组活动,充分发挥备课组在备考复习中的组织、安排、指导、协调功能,发挥备课组的集体智慧,群策群力,确保总复习高效、有序的运行。坚持做到“四定”、“四统一”即备课活动做到定时间、定地点、定内容、定主讲人;统一进度、统一资料、统一作业、统一考试,强化整体协作意识,做到信息,资源共享。分析研究学生状况和各自的教学情况,并对优质生、边缘生给予更多的关注,确保其成绩稳步提高。我们充分利用备课活动及各类考试评析活动,大家充交流思想,畅所欲言,集思广益,优势互补。全体备课组的老师们彼此虚心学习,互相请教,蔚然成风。
三、紧扣《考纲》,有的放矢
XX年的高考是稳中有变动,准确了解“变”在何处,及时调整复习方向,意义非常重大。
针对考纲年年变化的情况,数学组特别要求每位数学老师都必须认真研究学习《考试大纲》、考试说明,和近三年的全国高考数学试题,特别注重研究《考纲》中变化的部分。凡是《考纲》中明确规定的考点,必须复习到位,不能有半点疏漏,对于有变化的内容则更加重视,绝不遗漏一个考点,也绝不放过一个变化点。
复习一个考点的同时,我们也结合了适当的训练,以期达到巩固的目的'。对于资料的选择,我们坚持精选试题,精心组合,不搞盲目训练,有针对性、阶段性、计划性。更不搞题海战术,题不在多,贵在于精,在于质量,让学生练有所获。对于每一次训练我们都必须精讲,而且讲必讲透,重在落实。在第二轮的复习中,针对学生主观题解题能力较弱的情况,数学组及时采取“每日一练”的办法,即每天做一题综合题,全批全改。通过强化综合题训练,掌握解题技巧,提高学生综合题解题能力。
此外,我们还根据领导小组的安排,精心安排数学的优质生辅导。针对这些不同层次的学生,我们不仅注意的学生知识与能力的提高,也注意加强了学习方法的指导,对他们提出了不同的目标和要求。例如,基础较好的学生我们就以更高的目标要求,力争在此基础上创造佳绩,而对于基础薄弱的学生则要求他们夯实基础,力争有较大的提高。注意加强与他们的沟通,消除学生的心理困惑,缓解考前心理压力,注意考后的心理疏导。通过这些措施,让参与辅导的学生在学习更加努力,心理更加健康,知识更加扎实,能力不断提高。
“长风破浪会有时,直挂云帆济沧海”前进的道路上有很多困难艰险,但我们将锲而不舍。“他山之石,可以攻玉”我们也将虚心学习别人的经验,不断地充实自己,同心同德,扎实工作。
高三数学年度总结 篇12
正弦、余弦典型例题
1.在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
2.已知α为锐角,且,则α的度数是A.30°B.45°C.60°D.90°
3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是A.75°B.90°C.105°D.120°
4.若∠A为锐角,且,则A=A.15°B.30°C.45°D.60°
5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。
正弦、余弦解题诀窍
1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理
2、已知三边,或两边及其夹角用余弦定理
3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。
高三数学年度总结 篇13
等式的性质:
①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1)a>bb
(2)a>b,b>ca>c(传递性)
(3)a>ba+c>b+c(c∈R)
(4)c>0时,a>bac>bc
cbac
运算性质有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
高中数学集合复习知识点
任一A,B,记做AB
AB,BA ,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)-card(AB)
(1)命题
原命题若p则q
逆命题若q则p
否命题若p则q
逆否命题若q,则p
(2)AB,A是B成立的充分条件
BA,A是B成立的必要条件
AB,A是B成立的充要条件
1.集合元素具有①确定性;②互异性;③无序性
2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法
(3)集合的运算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性质
n元集合的字集数:2n
真子集数:2n-1;
非空真子集数:2n-2
高中数学集合知识点归纳
1、集合的概念
集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
2、元素与集合的关系元素与集合的关系有属于和不属于两种:
元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。
3、集合中元素的特性
(1)确定性:设A是一个给定的集合,_是某一具体对象,则_或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。
(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。
4、集合的分类
集合科根据他含有的元素个数的多少分为两类:
有限集:含有有限个元素的集合。如“方程3_+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。
无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。
特别的,我们把不含有任何元素的集合叫做空集,记错F,如{|R|+1=0}。
5、特定的集合的表示
为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。
(2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。
(3)全体整数的集合通常简称为整数集Z。
(4)全体有理数的集合通常简称为有理数集,记做Q。
(5)全体实数的集合通常简称为实数集,记做R。
高三数学年度总结 篇14
本人是安徽人,于20xx年考入安庆市第一中学安徽省理科实验班,20xx年高考627分(忒失误了~~)未被浙江大学录取,次年642分(其实更失误)考入北京航空航天大学,现为北航在读学生。曾在高中获得20xx年全国化学竞赛三等奖-全国生物竞赛三等奖,20xx年全国化学竞赛二等奖(第一名)、全国数学竞赛二等奖。
距离高考已有两年时间了,看到自己的学弟学妹们辛苦而又痛苦地准备高考的时候,总会让自己想起当年的高中生活。同时,也希望能将自己的经验与他们分享,希望能给他们带来帮助。(本人不强,强人看到了表笑我~~)
由于高中是在理科实验班,我们有着自己特殊的计划,即高一年级就得把高中三年的理科课程全部上完......而高二一年的重点基本在竞赛上,和其他班的进度不一样。所以不具有可比性~~本人就从高三说起吧。
高三,基本上新课已经全部上完,主要的便是复习工作。那么在复习过程中,我的一些理解是:
数学:
很多同学觉得数学很难,其实......它也的确很难~~但是可以说高中的考题,虽千变万化,但总是有规律的。在复习时,除了要保证基础知识较为灵活地应用外,应该做好其他一些事情。
1、多做些模拟题。从题目中去寻找规律和方法。数学的内容不多,但是变形很多。想要每道题都能尽在你掌握之中,在刚刚上高三的时候是不可能的,只能靠多做练习去锻炼。方法是在练习中获得的。当你学到一种新的方法的时候,尽量把那道题抄下来,想一想为什么用这种方法,用其他的方法行不行。然后在理解这样的方法后,自己不看答案重新做一遍。如果能够很顺利地作出,说明这样的方法你已经知道了,如果下次再遇到类似的题目,即使你不会,但是在看到答案后你又会有一个新的印象,基本上两次到三次,这种方法你就学会了。而且熟能生巧的道理大家都懂,多做模拟题还可以提高自己的做题速度,这个随后说~~此外,做过几套高考真题后,你会发现一些规律,比如,选择填空题中的圆锥曲线题基本不用硬算,而且用到准线的时候特别多~~解答题中的三角函数,基本上从正弦定理、余弦定理和简单的三角变换中出,不会超过这个范围;证明题中若出现涉及有规律的n项的,经常用到数学归纳法等......当你掌握这些规律后,在做题时你就不会像一只无头苍蝇一样乱窜了。
2、易错的地方需要记录。高考题中很多地方可能会设置陷进。比如填空题中答案到底是一个还是两个?有没有计算判别式的范围?一元二次方程的二次项系数是不是为零,概率题目中会不会只有整数没有小数,区间应该是开的还是闭的?等等.....其实这些地方大家在做题时肯定经常遇到。一旦自己犯错了,不要觉得是自己不小心,反正会做的,没事。这是个危险的信号,因为在高考时,你很可能会犯下一些你平时犯过的错误,到时候你就后悔莫及了。所以遇到这种错误时,自己停下来,再看两遍,想想自己为什么错了,忽略了哪些地方。做题时可以随笔划下题目中的一些隐含信息,养成习惯后,高考中才会万无一失。另外大家容易忽略的是一些概念题。这类题目出的概率很小,但是一旦出了,便是在选择填空中,分值还是不小的。例如:正态分布与标准正态分布的转换公式~映射的概念等等~这些大家在平时一旦遇到,就顺带看下,别到了高考时因为它们而使自己的高考失败了
3、注意控制时间。可能部分老师说选择填空一起40~50分钟,后面大题平均一题10分钟,但是我认为这样的速度太慢了。当时在高考前我的速度是40分钟搞定所有题目,并且保证在140以上。其实我快的原因有几个,一是计算速度快,这既包括初中打下的多项式计算的功底,还包括高中联系的导数等的计算,但是快速中保持高的正确率,还有个很重要的原因是题目做多了,很多式子都是非常熟悉的,看到了自己熟悉的式子,当然会觉得有信心。一旦发现自己认为很诡异的式子,就会开始检查前面做的对不对,于是可以节省很多时间。第二个是方法得当。做选择填空的时候有个很好的方法叫做特殊值法,但是很多同学都不太会用~这个......只可意会不可言传啊......另外还有把选项代入原题的方法、逻辑推理法等等(比如如果A对了,那么D一定对,则A和D都不对~)这些方法可以帮助你很快地解决选择填空,我当时估计选择填空一起只要10分钟不到。因为很多题都用这些方法就搞定了。而后面的大题,前文说了,只要方法得当,其实还是很快的。但是一定要保持正确率。
4、以正确的态度对待考试。首先要给自己一个定位:我应该考多少分?当发现题目很难时,很多同学就开始慌张,于是做一题不会一题,做一题错一题。这样考得非常砸。一旦发现题目难,马上改变态度,重新定位自己:我该得多少分?其实更实际一点:我该做对哪些题?对于一份正常的考卷来说,绝大部分题目还是较为简单的基础题,只要稍加功夫就可以做出。而一般的被称作难的考试,难的原因,大部分在于运算量的增大,使同学们做每一题所花的时间都比自己估计的偏多,于是就会造成恐慌~其实只要大家静下心来,把自己该做对的做对,你的分数一定不会低的。另外,不要受到别人的干扰。高中复读的时候我的同桌是后来的安徽省榜眼,但是平时每次数学他都考不过我,因为当他40分钟就看到一个人悠闲地在他身边等待考试结束的时候,便开始心慌,后面做题时总会多多少少出点问题。到了高考,没人干扰他了,便考了150。在做题时,发现难题,5分钟还没有思路的,立刻跳过,否则,你的这次考试一定会死在这道题上。这其中的道理,相信大家都懂,不多说了。
高三数学年度总结 篇15
20__高考,是中牟二高向前迈进发展的契机,数学承载着高考成败的半壁江山。所以,20__高考,我组的备考信念是“必成不败”。首先,我们通过认真研讨,制定出了详细的备考计划。
教学进度计划
第一周(7.31——8.6) 第一章 集合与常用逻辑用语
第二周(8.7——8.13)第二章 函数概念及基本初等函数
第三周(8.14——8.20)
第四周(8.21——8.27) 第三章 导数及其应用
第五周(8.28——9.3)
第六周 (9.4——9.10) 第四章 三角函数 解三角形
第七周(9.11——9.17)
第八周(9.18——9.24)第五章 平面向量与复数
第九周(9.25——10.1)
第十周(10.2——10.8)
第十一周(10.9——10.15)第六章 数列
第十二周(10.16——10.21)第七章 不等式 第八章 立体几何
第十三周(10.22——10.29)
第十四周(10.30——11.5)立体几何
第十五周(11.6——11.12)
第十六周(11.13——11.19)第九章 平面解析几何
第十七周(11.20——11.26)
第十八周(12.27——12.3)
第十九周(12.4——12.10)统计与统计案例 (文:概率,古典概型,几何概型)
第二十周(12.11——12.17) 随机变量及其分布(文:4—4)
第二十一 (12.18——12.24)理科4-4 文科4-5
第二十二周(12.25——12.31)迎一测备考
第二十三周 (1.1-1.7)
第二十四周 (1.8-1.14)
第二十五周 (1.15-1.21)一测考试
备考建议
近几年高考显著特点是注重基础,从学生情况来看,平时学习不错但不得高分的主要原因不在于难题没有做好,而在于基本概念不清,基本方法不熟,解题过程不规范。因此在一轮复习要做到:
(1) 注重课本的基础作用与考试说明的导向作用。在每一节复习之前最好先领着学生将课本上的重要知识点与习题过一遍。
(2) 加强主干知识的生成,重视知识的交汇点。每章结束时要做好知识构建。形成知识框架。
(3) 复习过程,通过作业,习题,考试等,规范学生解题习惯,演草习惯。
(4) 督促学生做好笔记,错题集。加强题后反思,让学生学会总结。
(5) 教师将近五年的高考题分类整理,在每一章开始时,在一课一研时先共同探究本章节的高考动向。
以上是一测备考的数学教学工作的大致安排计划,为确保一测顺利圆满完成任务,当下我们备课组全体成员务必做好以下几点:
(1)每个成员认真备好课后方可进行一课一研,主讲人先谈本节课的教学设计,其余成员进行补充。
(2)对于课本,考试说明在每一章开始时要一块进行研讨,避免做无用功。
(3)每一节习题,例题,课时作业。教师务必先做,大胆舍去没有价值的习题,有价值的题目可以适当变式,教师一块探讨。
(4)一轮复习每节课基本都要配备作业,要让学生按时交作业,认真批改,及时发现问题。
(5)对于试卷质量,严格把关,每个人出试卷前先将本章试卷的知识点列出,在一课一研时,研讨后根据知识清单找习题。
(6)备课组全体成员提高做题量,做题能力,在备课之余多做高考题,提升能力同时,为精选习题提供精品题。
高三数学年度总结 篇16
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高三数学年度总结 篇17
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
高三数学年度总结 篇18
(1)先看“充分条件和必要条件”
当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。
但为什么说q是p的必要条件呢?
事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。
(2)再看“充要条件”
若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作pq
(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。
(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。
高三数学年度总结 篇19
1、函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2、复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3、函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的`对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4、函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5、方程k=f(x)有解k∈D(D为f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符号由口诀“同正异负”记忆;
(4)alogaN=N(a>0,a≠1,N>0);
8、判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10、对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
11、处理二次函数的问题勿忘数形结合
二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12、依据单调性
利用一次函数在区间上的保号性可解决求一类参数的范围问题;
13、恒成立问题的处理方法
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解;
a(1)=a,a(n)为公差为r的等差数列
通项公式:
a(n)=a(n-1)+r=a(n-2)+2r=、=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、
可用归纳法证明。
n=1时,a(1)=a+(1-1)r=a。成立。
假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r
则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、
通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
求和公式:
S(n)=a(1)+a(2)+、+a(n)
=a+(a+r)+、+[a+(n-1)r]
=na+r[1+2+、+(n-1)]
=na+n(n-1)r/2
同样,可用归纳法证明求和公式。
a(1)=a,a(n)为公比为r(r不等于0)的等比数列
通项公式:
a(n)=a(n-1)r=a(n-2)r^2=、=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、
可用归纳法证明等比数列的通项公式。
求和公式:
S(n)=a(1)+a(2)+、+a(n)
=a+ar+、+ar^(n-1)
=a[1+r+、+r^(n-1)]
r不等于1时,
S(n)=a[1-r^n]/[1-r]
r=1时,
S(n)=na、
同样,可用归纳法证明求和公式。
高三数学年度总结 篇20
付正军:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节,主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二个是平面向量和三角函数。重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三,是数列,数列这个板块,重点考两个方面:一个通项;一个是求和。
第四,空间向量和立体几何。在里面重点考察两个方面:一个是证明;一个是计算。
第五,概率和统计,这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。
第六,解析几何,这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20xx年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七,押轴题,考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
高三数学年度总结 篇21
这学期我担任高三年理科班(3)(4)两班的数学教学工作,这是我工作以来第一次任教高三年级,没有经验,在这一半学期的时间里,我深知肩上的责任,一直以来我努力的工作经常向老教师学习。新的高考形势下,高三数学怎么去教,学生怎么去学?工作起来感到压力很大。现对本学期教学工作总结如下:
一、研读考纲,梳理知识
研究《考试说明》中对考试的性质、考试的要求、考试的内容、考试形式及试卷结构各方面的要求,并以此为复习备考的依据,也为复习的指南,做到复习不超纲,同时,从精神实质上领悟《考试说明》,具体说来是:细心推敲对考试内容三个不同层次的要求。准确掌握哪些内容是了解,哪些是理解和掌握,哪些是灵活和综合运用。这样就能明了知识系统的全貌,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有1-2道难度大的题就足够了。而理科这是很重要的一部分,所以复习时应用花大的精力去抓选择填空题,实际上,实践告诉我们,难的选择填空题是押不上的,遇到时只能依靠学生自己的数学能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我们除了在平时的训练,还作了选择填空题的专题训练以提高学生的解题技巧。
二、立足课本夯实基础
高考复习,立足课本,夯实基础.复习时要求全面周到,注重教材的科学体系,打好"双基",准确掌握考试内容,做到复习不超纲,不做无用功,使复习更有针对性,细心推敲对高考内容四个不同层次的要求,准确掌握那些内容是要求了解的,那些内容是要求理解的,那些内容是要求掌握的,那些内容是要求灵活运用和综合运用的;细心推敲要考查的数学思想和数学方法;在复习基础知识的同时要注重能力的培养,要充分体现学生的主体地位,将学生的学习积极性充分调动起来,教学过程中,不仅要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时还适当增加难度,教学起点总体要高,注重提优补差,新高考将更加注重对学生能力的考查,适当增加教学的难度,为更多优秀的学生脱颖而出提供了更多的机会和空间,有利于优秀的学生最大限度发挥自己的潜能,取得更好的成绩;对于差生充分利用辅导课的时间帮助他们分析学习上存在的问题,解决他们学习上的困难,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,最大限度提高他们的数学成绩.
三、优化练习提高练习的有效性
知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的.练习才能实现;首先,练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因.练习的讲评是高三数学教学的一个重要的环节,为了最大限度地发挥课堂教学的效益,课堂的讲评要科学化,要注重教学的效果,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生板演,充分暴露学生的思维过程,加强教学的针对性.多做限时练习,有效的提高了学生的应试能力.
四、不同学生不同要求
高考采用新的模式,学生选修的科类不同,因此学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求每位教师要从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习、课堂训练、课后作业的布置和课后的辅导的内容也就因人而异,对不同班级、不同层次的学生提出不同的要求。在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题、解决问题的能力。课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的思考题,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高。盖率应该尽量大,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有1-2道难度大的题就足够了。而理科这是很重要的一部分,所以复习时应用花大的精力去抓选择填空题,实际上,实践告诉我们,难的选择填空题是押不上的,遇到时只能依靠学生自己的数学能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我们除了在平时的训练,还作了选择填空题的专题训练以提高学生的解题技巧。
五、关注全体学生。
学好数学,除了智力因素以外,还有非智力因素特别是心理方面,一些同学害怕学不好数学,或者以前数学成绩一直不好,现在也一定学不好等,我采用了个别交流学习方法、学习心得等,告诉学生只要做好老师上课讲解的,课后加强领会、总结,一定会有进步的,不断关怀、帮助、指导,学生积极性提高,问的问题也多了起来,学习成绩也渐渐提高了。
高三数学年度总结 篇22
第一部分集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;
(2)注意:讨论的时候不要遗忘了的情况。
第二部分函数与导数
1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、等);⑨导数法
3、复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出
②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5、函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,则;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;
2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;
3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;
4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。
5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。
高三数学年度总结 篇23
第二部分函数与导数
1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;
⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,则;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
高三数学年度总结 篇24
高三数学总复习既要立足于巩固所学的基础知识、掌握基本方法和技能,又要着眼于提高能力、深化思维;既要在复习中学全题型,又要避免“题海战术”,因此复习的质量直接关系到高考的成败。以下是的高三数学复习计划。
一、指导思想:
高三复习应根据本校学生的实际,立足基础,构建知识网络,形成完整的知识体系。要面向低、中档题抓训练,提高学生运用知识的能力,要突出抓思维教学,强化数学思想的运用,要研究高考题,分析相应的应试对策,更新复习理念,优化复习过程,提高复习效益。
二、复习进度:
按教研室下发的计划为准,结合本校实际,一轮在2月底3月初完成。材料以教研室下发材料为主,进行集体备课,难题删去。
每章进行一次单元过关考试和一次满分答卷,统考前进行一次模拟考试练习。
三、复习措施:
1、 抓住课堂,提高复习效益。
首先要加强集体研究,认真备课。集体备课要做到:“一结合两发挥”。一结合就是集体备课和个人备课相结合,集体讨论,同时要发挥每个教师的特长和优势,互相补充、完善。两发挥就是,充分发挥备课组长和业务骨干的作用,充分发挥集体的智慧和优势、集思广益。
集体备课的内容:备计划、课时的划分、备教学的起点、重点、难点、交汇点、疑点,备习题、高考题的选用、备学情和学生的阶段性心理表现等。
其次精选习题,注重综合 。复习中要选“题型小、方法巧、运用活、覆盖宽”的题目训练学生的应变能力。选有一定的代表性、层次性和变式性的题目取训练学生综合分析问题的能力。
再次上好复习课和讲评课。复习课,既讲题也讲法,注重知识的梳理,形成条理、系统的结构框架,章节过后学生头脑中要清晰。要讲知识的重、难点和学生容易错的地方,要引导学生对知识横向推广,纵向申。复习不等于重复也不等于单纯的解题,应温故知新,温故求新,以题论法,变式探索,深化提高。讲出题目的价值,讲出思维的过程 ,甚至是学生在解题中的失败的教训和走过的弯路。功夫花在如何提高学生的分析问题和解决问题的能力上
讲评课要紧紧的抓住典型的题目讲评,凡是出错率高的题目必须讲,必须再练习。讲解时要注意从学生出错的根源上剖析透彻 ,彻底根治。要做到:重点讲评、纠错讲评和辩论式讲评相结合,或者让学生讲题,给学生排疑解难,帮助学生获得成功。
2、畅通反馈渠道,了解学生
通过课堂提问、学生讨论交流、批改作业、评阅试卷、课堂板书以及课堂上学生情态的变化等途径,深入的了解学生的情况,及时的观察、发现、捕捉有关学生的信息调节教法,让教师的教最大程度上服务于学生。
3、复习要稳扎稳打,注重反思
数学复习要稳扎稳打,不要盲目的去做题,每次练习后都必须及时进行反思总结 。反思总结解题过程的俄 来龙去脉;反思总结此题和哪些题类似或有联系及解决这类问题有何规律可循5;反思总结此题还有无其它解法,养成多角度多方位的思维习惯;反思总结做错题的原因:是知识掌握不准确,还是解题方法上的原因,是审题不清还是计算错误等等。
注意心理调节和应试技巧的训练,应试的技巧和心理的训练要三高三的第一节课开始,要贯穿于整个高三的复习课,良好的心理素质是高考成功的一个重要环节。我们数学老师在讲课时尤其是考试中主要锻炼学生的心理素质,我们教育学生要以平常心来对待每一次考试。
4、强化数学思想方法的渗透,提高学生的解题能力
在复习中要加强数学思想方法的复习,特别要研究解题中常用的思想方法:函数和方程的思想、数形结合思想、分类讨论思想、转化和化归的思想,还有极限的思想和运动变化的思想,而采用的方法有:换元法、待定系数法、判别式法、割补法等,逻辑分析法有分析法、综合法、数学归纳法和反证法等。对于这些数学思想和方法要在平日的教学中,,结合具体的题目和具体的章节 ,有意识的、恰当的进行渗透学习和领会,要让学生逐个的掌握他们的本质的特征和运用的基本的程序,做到灵活的运用和使用数学思想和方法去解决问题。复习中注重揭示思想方法在知识互相联系、互相沟通中的纽带作用。
高三数学年度总结 篇25
一、备考具体措施(成功之处):
1、充分利用理科数学备课组的人员和资源优势,进行集体备课,提高了复习备考质量和效率
高三文科组只有3位老师,负责6个班,准确把握复习方向、收集信息、准备讲义、练习和试题,及时改卷及分析等任务重,就要充分利用理科数学备课组的人员和资源优势,进行集体备课,提高备课质量,而文科数学备课组将更多精力集中在文理差别内容和文科学生特点的研究上。而且命制每次月考、模考试题也是文理备课组通力合作,精心打造文理两份姊妹题。
文理备课组统一做到资源共享,加强备课的交流,注重相互协作,强化集体备课,做好每单元的教学进度、内容、深度、广度统一;集体备课,教案基本统一,同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透思想方法等,要有对重点难点的分析和解决方法。同时课后做好教学过程的反思总结。
2、认真研究了《考试说明》及近三年xx高考试题,较好地把握好高三数学复习备考的总方向
《考试说明》反映了命题的方向,认真研读考纲和说明,这样不但可以从宏观上掌握考试内容,做到复习不超纲;而且可以从微观上细心推敲对众多考点的不同要求,分清哪些内容只要一般理解,哪些内容应重点掌握,哪些知识又要求灵活运用和综合运用。复习中,要结合课本,对照《考试说明》把知识点从整体上再理一遍,既有横向串联,又有纵向并联。在复习中力争不要做无用功,有些内容就得敢于大胆的取舍,因为题永远是讲不完也是做不完的。
从近三年的xx高考来分析,我们预测:20xx年的总体要求保持平稳,20xx年xx高考文科数学试题难度应与20xx年高考试题难度基本一致或略难一点,试题的结构稳定的可能性也比较大。
从20xx年xx高考试题题看,我们备课组的备考总方向和难度都预测和控制得比较理想,下面对照分析我校20xx年校模和20xx年xx高考文科数学解答题情况:
题号
20xx校模
20xxxx高考
第16题
(三函数数)考察解三角形及三角函数的求值
(三函数数)考察三角函数的求值
第17题
(概率统计)考察频率、方差、古典概型及茎叶图
(概率统计)考察频率、古典概型
第18题
(立体几何)考察线面垂直、等积法求体积
(立体几何)考察线面平行、垂直、等积法求体积
第19题
(数列应用题)考察等差、等比数列求和
(数列)考察和式求通项、等差数列、数列求和
第20题
(解析几何)考察待定系数法法求曲线方程、定值问题及函数方程思想
(解析几何)考察考察待定系数法法求曲线方程、最值问题及函数方程思想
第21题
(函数导数)考察函数的单调性、存在性问题、证明不等式、分类讨论思想
(函数导数)考察察函数的单调性、函数最值、分类讨论思想
3、制定切实可行的计划,并且基本上按照计划安排进行复习,达到比较好的复习效果、
俗话:凡事不预而不立。切实可行的意思是计划要细致、具体、严格,一定要遵循计划的安排走,大家知道高三的复习,其实不止我们数学这一科,其他的学科也在内,都是时间紧任务重,要在有限的时间完成可以说是无限的复习内容,不精心作以安排,在复习中势必出现忙乱的现象,也会容易出现顾此失彼的后果。
在开学伊始,全组教师共同商讨就制定出一份时间上、具体到每章每节要用多少课时的不至于流于形式的严格计划,在计划中不但要考虑教学内容的多少,还要考虑在高考中占有的比重,更要顾及哪些内容是我们值得付出时间和精力的,等等一系列因素,使得大家在时间上有了紧迫感,使得我们的教学内容更加有效率,使得我们更能发挥积极性去充分地调动学生。
从第二学期的三次模拟(韶一模、广一模、韶二模)考试结果看,取得了取较好的复习效果,当然最终还是要经过高考结果的'检验。
附:高三数学复习分四个阶段的时间表:
第一阶段:高二期中后到3月10日前完成第一轮复习:系统复习(原计划上学期末结束)
第二阶段:3月10日到5月15日完成二轮复习:专题复习。
第三阶段:5月15日到5月底完成三轮复习:查漏补缺与模拟题训练;
第四阶段:6月1号到6号,学生自己复习与调整阶段。
4、注重数学学科的思想渗透,强化能力的培养、给学生科学合理适于接受的数学学习建议。
在复习中,加强基础知识的巩固和提高,加强各知识板块间的联系和综合,加强通性通法的总结和运用,重视教材,狠抓基础是根本;立足中低档,降低重心是策略;过程中发展能力,提高素质是核心。记得在开学初的教研活动中,我们数学的所有老师展开了对各年高考试题的研讨,大家的一致意见就是狠抓基础,立足中档题。在复习过程中我们经常提醒学生多回顾课本、做好学习笔记和纠错本,浓缩所学知识,熟练掌握解题方法,加快解题速度,缩短遗忘周期,达到复习巩固提高的效果,以提高知识与能力的综合性、应用性、创新性为重点。
在复习内容的安排上我们实行代数与几何、较易板块与较难板块交替进行复习,引导学生立足课本,浏览以前的课堂笔记,激活所有数学知识点,这样做既巩固了基础,又给尖子生突破综合问题留出了时间,树立了备战高考的信心、
在集体教研选择教学题目时尤其注重:(1)强调知识的综合性及不同章节的内在联系;(2)不断渗透重要的数学思想与方法。如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想方法;转化与划归的思想方法;运动与变换的思想方法等不断在复习过程中渗透;(3)强化数学思维训练,体现多一点想,少一点算或不急于算。也就是我们曾经说的:磨刀不费砍材功、(4)反思解答问题时的开窍点,优化解题时思维线路,熟练解答问题的通性通法,强化解答综合性数学高考试题的一般思维模式,就能不断提高综合分析问题和解决问题的能力、
5、精选题目,编写好补充讲义、周练、连堂训练(限时训练)、加强检查落实及做好各次月考模考的考试分析。
三位老师既合作、又分工明确,我负责参考在理科数学补充讲义的基础,修改和编写文科数学补充讲义及命制各次周考、月考、模考试题,刘昕负责出好每周的连堂训练和限时训练,杜秋出好每周的周练及做好练习及考试题检对及送印工作。连堂训练(限时训练)让学生独立完成,提高运算能力,在第二节课讲评,周练下周一收,一般安排在周二讲评。周六考、月考或模考周六,加强横向与纵向对比;及时做好统计分析。
以重点知识再复习为主,高三这一年的复习备考中我们一直采取段段清,紧紧跟的原则,所谓段段清就是复习完一个章节即时考查,力求不留知识死角,使得基础复习更完备,知识脉络更清晰,所谓紧紧跟就是复习完这一章再连同前面复习的所有的内容一起再考一次,做好滚动练习与周连结合,及时的巩固缩短了遗忘周期、
在二轮复习过程中,我们基本采用了以学生为主体的练讲结合,把所有的题目都让学生独立的完成,然后学生讲评、老师点评、点拨。达到精讲精练的目的。也使学生不在题海中泛滥,而是在规律和方法中寻求触类旁通,举一反三,游刃有余的学习境界、
6、落实学校“培优推中提弱”六字方针,加强对尖子生和临界生的培养,做好学生心理辅导。
尖子生的培养文理合为一个班(文10人,理30人),按计划每周上课,充分调动学生积极性和主动性,营造学习和研讨学风。临界生成绩是否能提高直接影响高考的成败,临界生的培养不是一朝一夕的事儿,尤其是文科,很多学生都是因为数学不好才选择了文科,甚至很多尖子生在数学上都存在缺腿现象,这就造成班级没有学习数学的氛围,没有带头人,下大力气培养尖子生,因为只要有一人能学会就会一帮两,两帮三从而带动一批人来学数学。我们的具体做法是:课堂上重点抓基础讲教材,尤其是书上例题书后习题,高考很多知识的考察都是源于课本而高于课本,只有打好基础才能做好提高;课下每天坚持找目标生谈心,多鼓励,做好学生的心理辅导,对于作业必须面批,这方面得到了班主任的大力支持,这不仅提高了学生学习数学的积极性,也培养了学生独立思考和解决问题的能力,同时提高他们的数学成绩。年级将艺体生组成一个班,从他们回来开始,就安排三位老师(谢谢理科备课组的大力支援!)坚持上课到6月5日,取得较好的效果。
二、备考不足之处
1、第一轮复习没有完全按计划结束,拖得时间略长了些,导致二、三轮复习时间略紧,稍微被动了些。
2、由于我本人自分文理科后,没有担任文科数学教学的经验,在复习的难度把握上还是略拔高了些。
3、数列内容的复习,受xx高考前几年的影响,在难度上把握得太难了,虽然近两年的难度减小的呼声,但复习仍不敢降得太多。不过这点还值得商讨。
三、几点备考建议:
1、制定切实可行的计划,并且上按照计划安排进行复习,保证第一轮复习既扎实进行,又完全按计划结束。
2、认真研究了《考试说明》及近三年xx高考试题,较好地把握好高三数学复习备考的总方向,尤其是把握好文科数学特点,控制复习的难度和深度,这是高考备考指导方针。
3、认真加强周练、连堂训练(限时训练)的加强检查落实及做好各次月考模的考试分析,
这是高考成功的保证。
4、落实学校“培优推中提弱”六字方针,加强对尖子生和临界生的培养,做好学生方法指导和心理辅导,这是高考的突破点和增长点。
高三数学年度总结 篇26
第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20xx年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
高三数学年度总结 篇27
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:
①上下底面是相似的平行多边形
②侧面是梯形
③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:
①底面是全等的圆;
②母线与轴平行;
③轴与底面圆的半径垂直;
④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:
①底面是一个圆;
②母线交于圆锥的顶点;
③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:
①上下底面是两个圆;
②侧面母线交于原圆锥的'顶点;
③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:
①球的截面是圆;
②球面上任意一点到球心的距离等于半径。
高三数学年度总结 篇28
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的.方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”;
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;
(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;
(5)夹在两个平行平面间的平行线段相等;
(6)经过平面外一点只有一个平面和已知平面平行。