《高二数学总知识点概括》
知识掌握的巅峰,应该在一轮复习之后,也就是在你把所有知识重新捡起来之后。应对高二这一变化的较优选择,是在高二还在学习新知识时,有意识地把高一内容从头捡起,自己规划进度,提前复习。下面是小编给大家整理的高二数学知识点,希望能帮助到大家!
高二数学总知识点概括1
1.在中学我们只研直圆柱、直圆锥和直圆台。所以对圆柱、圆锥、圆台的旋转定义、实际上是直圆柱、直圆锥、直圆台的定义。
这样定义直观形象,便于理解,而且对它们的性质也易推导。
对于球的定义中,要注意区分球和球面的概念,球是实心的。
等边圆柱和等边圆锥是特殊圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要注意与一般圆柱、圆锥的区分。
2.圆柱、圆锥、圆和球的性质
(1)圆柱的性质,要强调两点:一是连心线垂直圆柱的底面;二是三个截面的性质——平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形。
(2)圆锥的性质,要强调三点
①平行于底面的截面圆的性质:
截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比。
②过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为:
易知,截面三角形的顶角不大于轴截面的顶角(如图10-20),事实上,由BC≥AB,VC=VB=VA可得∠AVB≤BVC.
由于截面三角形的顶角不大于轴截面的顶角。
所以,当轴截面的顶角θ≤90°,有0°<α≤θ≤90°,即有
当轴截面的顶角θ>90°时,轴截面的面积却不是的,这是因为,若90°≤α<θ<180°时,1≥sinα>sinθ>0.
③圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特别是关系式
l2=h2+R2
(3)圆台的性质,都是从“圆台为截头圆锥”这个事实推得的,高考,但仍要强调下面几点:
①圆台的母线共点,所以任两条母线确定的截面为一等腰梯形,但是,与上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。
②平行于底面的截面若将圆台的高分成距上、下两底为两段的截面面积为S,则
其中S1和S2分别为上、下底面面积。
的截面性质的推广。
③圆台的母线l,高h和上、下两底圆的半径r、R,组成一个直角梯形,且有
l2=h2+(R-r)2
圆台的有关计算问题,常归结为解这个直角梯形。
(4)球的性质,着重掌握其截面的性质。
①用任意平面截球所得的截面是一个圆面,球心和截面圆圆心的连线与这个截面垂直。
②如果用R和r分别表示球的半径和截面圆的半径,d表示球心到截面的距离,则
R2=r2+d2
即,球的半径,截面圆的半径,和球心到截面的距离组成一个直角三角形,有关球的计算问题,常归结为解这个直角三角形。
3.圆柱、圆锥、圆台和球的表面积
(1)圆柱、圆锥、圆台和多面体一样都是可以平面展开的。
①圆柱、圆锥、圆台的侧面展开图,是求其侧面积的基本依据。
圆柱的侧面展开图,是由底面图的周长和母线长组成的一个矩形。
②圆锥和侧面展开图是一个由两条母线长和底面圆的周长组成的扇形,其扇形的圆心角为
③圆台的侧面展开图是一个由两条母线长和上、下底面周长组成的扇环,其扇环的圆心角为
这个公式有利于空间几何体和其侧面展开图的互化
显然,当r=0时,这个公式就是圆锥侧面展开图扇形的圆心角公式,所以,圆锥侧面展开图扇形的圆心角公式是圆台相关角的特例。
(2)圆柱、圆锥和圆台的侧面公式为
S侧=π(r+R)l
当r=R时,S侧=2πRl,即圆柱的侧面积公式。
当r=0时,S侧=rRl,即圆锥的面积公式。
要重视,侧面积间的这种关系。
(3)球面是不能平面展开的图形,所以,求它的面积的方法与柱、锥、台的方法完全不同。
推导出来,要用“微积分”等高等数学的知识,课本上不能算是一种证明。
求不规则圆形的度量属性的常用方法是“细分——求和——取极限”,这种方法,在学完“微积分”的相关内容后,不证自明,这里从略。
4.画圆柱、圆锥、圆台和球的直观图的方法——正等测
(1)正等测画直观图的要求:
①画正等测的X、Y、Z三个轴时,z轴画成铅直方向,X轴和Y轴各与Z轴成120°。
②在投影图上取线段长度的方法是:在三轴上或平行于三轴的线段都取实长。
这里与斜二测画直观图的方法不同,要注意它们的区别。
(2)正等测圆柱、圆锥、圆台的直观图的区别主要是水平放置的平面图形。
用正等测画水平放置的平面圆形时,将X轴画成水平位置,Y轴画成与X轴成120°,在投影图上,X轴和Y轴上,或与X轴、Y轴平行的线段都取实长,在Z轴上或与Z轴平行的线段的画法与斜二测相同,也都取实长。
5.关于几何体表面内两点间的最短距离问题
柱、锥、台的表面都可以平面展开,这些几何体表面内两点间最短距离,就是其平面内展开图内两点间的线段长。
由于球面不能平面展开,所以求球面内两点间的球面距离是一个全新的方法,这个最短距离是过这两点大圆的劣弧长。
高二数学总知识点概括2
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.
3、表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
高二数学总知识点概括3
直线的倾斜角:
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
直线的斜率:
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式。
注意:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
直线方程:
1.点斜式:y-y0=k(x-x0)
(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。
2.斜截式:y=kx+b
直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。
3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。
如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。
高二数学总知识点概括相关文章: