《高考数学创新题型思维方法归纳》
新课标以来,高考数学中出现了创新题型,以第8、14、20题为主,创新题型是建立在高中数学思维体系之上的一中新数学题型。以下是小编搜索整理的关于高考数学创新题型思维方法归纳,供参考学习,希望对大家有所帮助!
高考数学创新题型思维方法归纳
(一)解析几何中的运动问题
解析几何中的创新小题是新课标高考中出现频率最高的题型,09、10、11年高考数学选择填空压轴题都出现了运动问题。即新课标高考数学思维从传统分析静态模型转变为分析动态模型。因此考生需要掌握在运动过程中对于变量与不变量的把握、善于建立运动过程中直接变量与间接变量的关系、以及特殊值情境分析、存在问题与任意问题解题方法的总结。
在解此类创新题型时,往往需要融入生活中的很多思想,加上题目中所给信息相融合。在数学层面上,需要考生善于从各个角度与考虑问题,将思路打开,同时善于用数学思维去将题目情境抽象成数学模型。
(二)新距离
近几年兴起的关于坐标系中新距离d=|X1-X2|+|Y1-Y2|的问题,考生需要懂得坐标系中坐标差的原理,对于对应两点构成的矩形中坐标差的关系弄清楚就行了。近两年高考大题中均涉及到了新距离问题,可是高考所考察的内容不再新距离本身,而在于建立新的数学模型情况下,考生能否摸索出建立数学模型与数学思维的关系。比如2011年压轴题,对于一个数列各个位做差取绝对值求和的问题,由于每个位取值情况均相同,故只需考虑一个位就行了。在大题具体解题中笔者会详细叙述。
(三)新名词
对于题目中出现了新名词新性质,考生完全可以从新性质本身出发,从数学思维角度理解新性质所代表的数学含义。此类创新题型就像描述一幅画一样去描述一个数学模型,然后描述的简洁透彻,让考生通过此类描述去挖掘性质。新课标数学追求对数学思维的自然描述,即不会给学生思维断层、非生活常规思路(北京海淀区2012届高三上学期期末考试题的解析几何大题属于非常规思路)。比如2009年北京卷文科填空压轴题,就是让学生直观形象的去理解什么叫做孤立元,这样肯快就可以得到答案。
(四)知识点性质结合
此类题型主要结合函数性质、图象等知识点进行出题,此类题一般只要熟悉知识点网络结构与知识点思维方式就没有问题。比如2011年高考北京卷填空压轴题,需要考生掌握轨迹与方程思想,方程与曲线关于变量与坐标的一一对应关系。再比如2009年北京卷填空压轴题,就是对数列递推关系进行了简单的扩展,考生只要严格按照题目的规则代入就可得到答案。此类题型需要考生对于知识点的原理、思维方法有深层次的理解才能够很快做出答案。上面提到的两道题均没有考对应知识点的细节处理问题,而是上升的数学思维方法的层次。
(五)情境结合题
此类题型属于与现实模型、数学特殊模型等相结合的题目。此类题型主要考察学生对于具体数学情境的体会,比如2010年填空压轴题是正方形在坐标轴上旋转的问题,这道题考查考生对于正方形旋转过程中指定点运动拐点的体会。此类题需要考生具有一定的数学思维推理、数学抽象归纳能力。解此类题只需像分析物理模型一样去分析题目所给出的具体情境,即可将原题进行分解。
高考数学注意事项
一、调理大脑思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、高考数学注意事项:沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
四、“六先六后”,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,
4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗
5.先点后面。近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面
6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
高考数学创新题型思维方法归纳相关文章:
1.高考数学创新题思维方法分析
2.2020冲刺高三数学的方法总结
3.2020高考数学176个知识点题型归纳,高考数学如何达到及格
4.高考数学解题思维、解题技巧
5.高中数学思想与逻辑:11种数学思想方法总结与例题讲解
6.2017高考常考数学题型归纳
7.高考数学的核心考点及答题技巧方法
8.高考数学必考题型以及题型分析
9.高考数学选择题答题技巧有哪些
10.做中高考数学压轴题的技巧