首页 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 有关高考文科数学的答题方法及技巧正文

《有关高考文科数学的答题方法及技巧》

时间:

  数学这个学科是很多人心中的恐惧,因为它复杂难理解,尤其是对于文科生来说,需要强大的逻辑思维才能理顺一道数学题。所以学好数学,才能灵活的运用.接下来是小编为大家整理的有关高考文科数学的答题方法及技巧,希望大家喜欢!

  有关高考文科数学的答题方法及技巧一

  “跳步”答题

  有一些同学看到这个题自己会做,就放松警惕,跳步答题,导致不必要的失分。

  建议:

  平时和考试都遵循“绝不跳步”的原则

  数学符号书写不规范

  数学符号是有严格规定的,比如属于符号(∈),正弦(sin),余弦(cos)

  建议:

  想清楚自己要使用的符号,再下笔,平时注意对照课本,不放过细节

  计算出错

  比如数学的证明题,一个步骤错了下面的证明也得不了分。

  建议:

  ①数学计算要步步都认真

  ②数学大题一定要留出检查时间

  ③加强计算练习

  有关高考文科数学的答题方法及技巧二

  一、规范书写

  高考文科数学答题技巧之一就是规范书写,这一点是文理通用的技巧。卷面评分标准就是规范度,这就要求不但要对、而且要全且规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷 非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,“感情分”也就相应低了,所以高考答题书写要工整,保证卷面能得分。

  二、讲究策略

  对于高考文科数学题要力求做的对、全、得满分,高考文科数学有两种常用方法:

  1.分步解答:对于疑难问题,考生可以将它划分为一系列的步骤,先解决问题的一部分,能解到几步就写几步,每进行一步就可得到这一步的分数,也可以把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。从局部到整体,形成思路,获得解题成功。在高考文科数学答题过程中尽量多的列举应用到的公式。

  2.跳步解答:当文科数学在解题的某一环节出现问题时,可以跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

  三、合理分配时间

  1、文科数学就是和时间的斗争。高考文科数学试卷一发下来后,首先把全部问题看一遍。找出其中看上去最容易解答的题,然后假定步骤,思考怎么样的顺序解题才最好。

  2、切忌不看题目盲目背题,要仔细审题,清楚题目要求你解决什么问题,然后有条不紊迅速解题,提高准确率。

  3、解题格式要规范,重点步骤要突出。

  4、选择题时间控制在35分中以内。小题小做、巧做、简单做,选择题和填空题要多用数形结合、特殊值验证法等技巧,节约时间。

  5、保持心静,以不变应万变。切莫因旁人的翻卷或其他行为干扰自己的解决思路。这些都是高考文科数学应试答题高分技巧。

  四、掌握文科数学失分原因

  ①对题意缺乏正确的理解,应做到慢审题快做题;

  ②公式记忆不牢,考前一定要熟悉公式、定理、性质等;

  ③思维不严谨,不要忽视易错点;

  ④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

  ⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

  ⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

  正确运用高考文科数学答题技巧,不仅可以预防各种心理障碍造成的不合理丢分和计算失误及笔误,而且能运用科学的检索方法,考出最佳成绩。以上是新高三小编整理的高考文科数学答题技巧,供考生参考,祝广大考生在高考中取得优异的成绩,考入理想的大学。

  有关高考文科数学的答题方法及技巧三

  1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

  2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

  3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

  4、选择与填空中出现不等式的题目,优选特殊值法;

  5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

  6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

  7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

  8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

  9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

  10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

  11、数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

  12、立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

  13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

  14、概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

  15、遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

  16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;

  17、绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;

  18、与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;

  19、关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。



有关高考文科数学的答题方法及技巧相关文章