首页 > 学习方法 > 小学学习方法 > 六年级方法 > 六年级数学 > 六年级小升初奥数正文

《六年级小升初奥数》

时间:

奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。小升初可以通过奥数这门竞赛来为自己争取到更好的机会。下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。

六年级小升初奥数

1、一个两位数除72,余数是12,那么满足要求的所有两位数有几个?分别是多少?

解答:由题意知,所求的两位数应是7212=60的约数,还应大于12。在60的约数中,两位数有10、12、15、20、30、60这六个数,大于12的有:15、20、30、60这四个数。所以满足要求的两位数有4个,分别是15、20、30、60。

2、有写着5、9、17的卡片各8张,现在从中任意抽出5张,这5张卡片上的数字之和可能是()。

A、31  B、39  C、55  D、41

解答:5、9、17三个数除以4都是余1的,任取5张,也是除以4余1的,所以是D。

3、某校五年级学生排成一个实心方阵,最外一层总人数为60人,问方阵最外层每边有多少人?这个方阵共有学生多少人?

解答:方阵最外层每边人数:604+1=16(人)

整个方阵共有学生人数:1616=256(人)

4、12张乒乓球台上共有34人在打球,那么正在进行单打和双打的台子各有多少张?

解答:利用鸡兔同笼的想法,假设都在进行单打,那么应有122=24人,多出34-24=10人。把单打变为双打,每个台子需要增加2人,所以双打的台子有102=5张,单打的台子有12-5=7张。

5、一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人?

解答:20-4=16(人),2020=400(人),1616=256(人),400-256=144(人)

6、有黑白两种棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。那么在全部棋子中,白子共有多少枚?

解答:271+432+153=158(枚)

7、有336个苹果、252个桔子、210个梨,用这些水果最多可以分成多少份同样的礼物?每份礼物中的三样水果各有多少个?

解答:(336,252)=(84,252)=84

(84,210)=(84,42)=42所以可以分成42份礼物

苹果:33642=8(个)桔子:25242=6(个)梨:21042=5(个)

8、正方形操场四周栽了一圈树,每两棵树相隔5米。甲乙二人同时从一个角出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了第一弯之后的第5棵树与甲相遇。操场四周一共栽了多少棵树?

解答:由于甲速是乙速的2倍,所以乙在拐了第一弯时,甲正好拐了两个弯,即两个人开始同时沿着最上边走。

乙走过了5棵树,也就是走过了5个间隔,所以甲走过了10个间隔,四周一共有(5+10)4=60个间隔,根据植树问题,一共栽了60棵树。

9、有甲乙丙三种货物,若购甲3件,乙7件,丙1件共需315元。若购甲4件,乙10件,丙1件共需420元。现购甲乙丙各一件共需多少元?

解答:设甲、乙、丙每件分别为x、y、z元

3x+7y+z=315

4x+10y+z=420

可知x+3y=105,2x+6y=210,x+y+z=105,即三种货物各一件需要105元。

10、某年一月份有4个星期四、5个星期五,这一年1月4日是星期几?

解答:画一个日历表,从表中马上看出:1月4日星期一。

说明:根据“有五个星期五”,可知从第一个星期五到第五个星期五之间共有29天。31-29=2(天),这多余的2天是在第一个星期五前,还是在第五个星期五之后呢?如果在第一个星期五之前,那就多一个星期四,这与题中条件不符。

 小学六年级奥数小升初测试题

1、一个三位数除以43,商是a,余数是b(a、b都是整数)则a+b的值是。

2、上底是10厘米,下底是25厘米的梯形,如果下底减少8厘米,而上底不变,面积就减少84平方厘米,那么原梯形的面积是平方厘米。

3、有甲、乙、丙三个数,甲、乙两数的和是147,丙、乙两数的和是123,甲、丙两数的和是132,则甲数是,乙数是,丙数是。

4、用一个小数减去一个末尾数字不为零的整数,如果给整数添上一个小数点,使它变成小数,差就增加154.44,那么这个整数是。

5、一个表面积为54平方分米的正方体,切成两个完全相等的长方体后,表面积总和是。

6、把一根长3米的长方体木料,平均锯成3段,表面积增加了2.4平方米,这根木料的体积是立方米。

7、有一筐苹果,第一次取出全部的一半多2个,第二次取出余下的一半少2个,筐中还剩20个,筐中原有苹果个。

8、小军期末考试,语文、英语(论坛)、科学三门的平均成绩是78分,数学成绩公布后,四门的平均成绩提高了5分,小军数学考了分。

二、应用题(每题6分,共60分)

1、甲、乙两列火车从相距470千米的两城相向而行,甲车每小时行驶38千米,乙车每小时行驶40千米。乙车先出发两小时后,甲车才出发,甲车行驶多少小时后与乙车相遇?

2、某小队学生参加工厂劳动,平均每人生产76个零件,已知每个人至少做70个,其中一人做了88个,如果不把这个同学计算在内,那么平均每人做74个,这个小队做得最多的同学可以做多少个零件?

3、已知两个自然数的积是5766,它们的公因数是31,求这两个数。

4、把一根长2.4米,宽0.8米,高0.4米的木料锯成体积相等的两份,它的表面积最少增加多少平方米?

5、甲、乙、丙、丁四个数,每次去掉一个数,将其余三个数求平均数,这样算了四次,得到以下四个数:45,60,65,70,求甲、乙、丙、丁四个数的平均数。

6、小明前几次数学测验的平均成绩是84分,这次要考100分才能把平均成绩提高到86分,问这次是第几次测试?

7、小红每分钟行80米,小英每分钟行60米,两人在同一地点同时相背而行,走了三分钟后,小红调头去追小英,追上小英时,两人各行了多少米?

8、张老师找甲、乙、丙三名学生来办公室谈话,甲要10分钟谈完,乙要12分钟谈完,丙要8分钟谈完,怎么样安排三人的谈话顺序,使三人花的总时间最少?最少是几分钟?

小升初面试经典奥数思维题

1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)

6、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?

12、五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

13、某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?

14、妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?

15、学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?

16、某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?

17、某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?

18、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?

19、学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?

20、两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?

21、一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?

22、一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?

23、用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?

24、小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?

25、有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?

26、把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?

27、一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?

28、李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?

29、甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?

30、有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?

31、在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?

32、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?

33、学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?

34、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?

35、学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?

36、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?

37、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?

38、光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?

39、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?

40、一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?

41、小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?

42、有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?

43、有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?

44、妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?

45、甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?

46、盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?

47、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。

48、父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?

49、王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?

50、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?

小升初的奥数题精选

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

考点:列方程解含有两个未知数的应用题;差倍问题。

专题:和倍问题;列方程解应用题。

分析:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.

解答:解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:

10x﹣x=288,

9x=288,

x=32;

则桌子的价格是:32×10=320(元),

答:一张桌子320元,一把椅子32元.

点评:此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱.再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(10﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元.

2.3箱苹果重45千克.一箱梨比一箱苹果多5千克,3箱梨重多少千克?

考点:整数、小数复合应用题。

专题:简单应用题和一般复合应用题。

分析:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答

解答:解:45+5×3,

=45+15,

=60(千克);

答:3箱梨重60千克.

点评:本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量.

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?

考点:简单的行程问题。

专题:行程问题。

分析:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇.即可求甲比乙每小时快多少千米.

解答:解:4×2÷4

=8÷4,

=2(千米);

答:甲每小时比乙快2千米.

点评:解答此题的关键是确定甲比乙在4小时内多走了多少千米,然后再根据路程÷时间=速度进行计算即可.

4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱.每支铅笔多少钱?

考点:整数、小数复合应用题。

专题:简单应用题和一般复合应用题。

分析:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱.据此解答.

解答:解:0.6÷[13﹣(13+7)÷2],

=0.6÷[13﹣20÷2],

=0.6÷3,

=0.2(元);

答:每支铅笔0.2元.

点评:本题的关键是求出李军给张强0.6元钱,是几支铅笔的价钱.

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸.由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点.甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)

考点:简单的行程问题。

专题:行程问题。

分析:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间.根据两车的速度和行驶的时间可求两车行驶的总路程.

解答:解:下午2点是14时.

往返用的时间:14﹣8=6(时)

两地间路程:(40+45)×6÷2

=85×6÷2,

=255(千米);

答:两地相距255千米.

点评:解答此题的关键是确定两车行驶的时间,然后再根据公式速度×时间=路程计算出两车行驶的总路程,再除以就是两地相距的距离.

6.学校组织两个课外兴趣小组去郊外活动.第一小组每小时走4.5千米,第二小组每小时行3.5千米.两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组.多长时间能追上第二小组?

考点:追及问题。

专题:行程问题。

分析:第一小组停下来参观果园时间,第二小组多行了[3.5﹣(4.5﹣3.5)]千米,也就是第一组要追赶的路程.又知第一组每小时比第二组快(4.5﹣3.5)千米,由此便可求出追赶的时间.

解答:解:第一组追赶第二组的路程:

3.5﹣(4.5﹣3.5),

=3.5﹣1,

=2.5(千米);

第一组追赶第二组所用时间:

2.5÷(4.5﹣3.5),

=2.5÷1,

=2.5(小时);

答:第一组2.5小时能追上第二小组.

点评:此题属于复杂的追击应用题,此类题的解答方法是根据“追及路程÷速度差=追及时间”,代入数值,计算即可

7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨.甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

考点:列方程解含有两个未知数的应用题;和倍问题。

专题:简单应用题和一般复合应用题;和倍问题。

分析:设乙仓库的存粮是x吨,则甲仓库的存粮是4x﹣5吨,则根据等量关系:“两个仓库的存粮一共有32.5×2=65吨”,由此列出方程解决问题.

解答:解:设乙仓库的存粮是x吨,则甲仓库的存粮是4x﹣5吨,根据题意可得方程:

x+4x﹣5=32.5×2,

5x=70,

x=14,

则甲仓库存粮:14×4﹣5=51(吨),

答:甲仓库有51吨,乙仓库有14吨.

点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.

8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米.甲、乙两队每天共修多少米?

考点:简单的工程问题。

专题:工程问题。

分析:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的.由此可求出乙队每天修的米数,进而再求两队每天共修的米数.

解答:解:乙每天修的米数:

(400﹣10×4)÷(4+5),

=(400﹣40)÷9,

=360÷9,

=40(米);

甲乙两队每天共修的米数:

40×2+10=80+10=90(米);

答:两队每天修90米.

点评:本题不能直接求出甲乙的工作效率和,要采取假设法,假设甲乙的工作效率相同,找出由此引起的工作量的变化,再根据工作效率=工作量÷工作时间求解.

9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

考点:简单的等量代换问题。

专题:简单应用题和一般复合应用题。

分析:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价.

解答:解:每把椅子的价钱:

(455﹣30×6)÷(6+5),

=(455﹣180)÷11,

=275÷11,

=25(元);

每张桌子的价钱:

25+30=55(元);

答:每张桌子55元,每把椅子25元.

点评:解答此题的关键是根据“每张桌子比每把椅子贵30元,”得出总价里面减去每张桌子多的30元,剩下的就相当于是(6+5)=11把椅子的价格,从而求出椅子的价格即可解答问题.

10.一列火车和一列慢车,同时分别从甲乙两地相对开出.快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

考点:简单的行程问题。

专题:行程问题。

分析:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程.

解答:解:(75+65)×[40÷(75﹣65)],

=140×[40÷10],

=140×4,

=560(千米);

答:甲乙两地相距560千米.

点评:解题的关键是理解用快车比慢车多行的路程÷两车的速度差=两车行驶的时间,再根据速度和×两车行驶的时间求出两地的距离.

11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元.运后结算时,共付运费4400元.托运中损坏了多少箱玻璃?

考点:盈亏问题。

专题:简单应用题和一般复合应用题。

分析:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数.根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,则损坏一个就少收运费100+20元,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱.

解答:解:(20×250﹣4400)÷(100+20),

=600÷120,

=5(箱)

答:损坏了5箱.

点评:明确损坏一个就少收运费100+20元是完成本题的关键.

12.五年级一中队和二中队要到距学校20千米的地方去春游.第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米.第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

考点:追及问题。

专题:行程问题。

分析:因第一中队早出发2小时比第二中队先行4×2千米,即此时两个中队之间的距离是8千米,而每小时第二中队比第一中队多行(12﹣4)千米,由此即可求第二中队追上第一中队的时间.

解答:解:4×2÷(12﹣4);

=4×2÷8;

=1(时);

答:第二中队1小时能追上第一中队.

点评:本题体现了追及问题的基本关系式:路程差÷速度差=追及时间.

13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天.这堆煤有多少千克?

考点:有关计划与实际比较的三步应用题。

专题:简单应用题和一般复合应用题。

分析:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500﹣1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量.

解答:解:原计划烧煤天数:

(1500+1000)÷(1500﹣1000),

=2500÷500,

=5(天);

这堆煤的重量:

1500×(5﹣1),

=1500×4,

=6000(千克);

答:这堆煤有6000千克.

点评:解答此题的关键是求原计划烧的天数,用前后烧煤总数相差除以每天烧煤量之差即原计划烧的天数,进而求出这堆煤的数


六年级小升初奥数相关文章