首页 > 学习方法 > 小学学习方法 > 五年级方法 > 五年级数学 > 小学五年级数学知识点正文

《小学五年级数学知识点》

时间:

每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是小编给大家整理的一些五年级数学知识点,希望对大家有所帮助。

小学五年级数学各单元重点知识点

1.轴对称的意义:把一个图形沿着某一条直线对折,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称;这条直线就是对称轴。两个图形完全重合时的点叫做对应点;互相重合的角叫做对应角,互相重合的线段叫做对应线段。

2.五年级下册数学各单元重点知识点:轴对称的性质:对应点到对称轴的距离相等。

3.轴对称的特征:沿对称轴对折,对应点、对应线段、对应角重合。

旋转 1.旋转的意义:物体绕着某一点运动,这种运动叫做旋转。

2.图形旋转方向:钟表中指针的运动方向成为顺时针旋转;反之,称逆时针旋转。

3.图形旋转的性质:图形绕着某一点旋转一定的度数,图形中的对应点、对应线段都旋转相应的度数,相对应的点到旋转点的距离相等,对应角相等。

4.图形旋转的特征:图形旋转后,形状、大小都没有发生变化,只是位置变了。

设计图案的基本方法 1.设计图形的基本方法:利用平移、旋转或对称,可以设计简单而美丽的图案

2.运用平移设计图案的方法:(1)选好基本图形;(2)确定平移的距离;(3)确定平移方向;(4)画出平移后的图形

3.运用平旋转计图案的方法:(1)选好基本图形;(2)确定旋转点;(3)定好旋转角度;(4)沿每次旋转后的基本图形的边缘画图。

4.运用对称设计图案的方法:(1)选好基本图形;(2)定好对称轴;(3)画出基本图形的对称图形。

五年级数学知识点

因数和倍数

1.因数和倍数的意义:如果a×b=c(a、b、c都不为0的整数),那么a、b就是c的因数,c就是a、b的倍数。

2.数与倍数的关系:因数和倍数是两个不同的该概念,但又是一对相互依存的概念,不能单独存在。

3.找一个数的因数的方法:(1)列乘法算式:根据因数的意义,有序地写出两个乘积是此数的所有乘法算式,乘法算式中每个因数就是该数的因能数。(2)列除法算式:用此数除以大于1等于1而小于等它本身的整数,所得的商是整数而无余数,这些除数和商都是该数的因数。

4.找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与非零自然数相乘,所得之数就是这个数的倍数。

2、3、5的倍数的特征 1.2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。

2.奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

3.奇数、偶数的运算性质:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数(大减小),奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。

4.5的倍数的特征:个位上是0或5的数都是5的倍数.

5.3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

质数和合数 1.质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

2.质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。

3.分解质因数:把一个合数用质数相乘的形式表是出来,就是分解质因数。

4.分解质因数的方法:(1):“树枝”图式分解法;(2)短除法分解。

小学五年级数学知识点归纳

摸球游戏(用分数表示可能性的大小)

【知识点】

用分数表示可能性的大小。

客观事件中,“不可能”出现的现象用数据表示为“可能性是0”,客观事件中,“一定能”出现的现象用数据表示为“可能性是1”,当可能性是相等的时候,用数据表述是“”。

逐步体会到数据表示的简洁性与客观性。

设计活动方案

【知识点】

运用分数表示可能性的大小,能自主地设计一些活动方案。

对实际生活中的事件与现象,能运用可能性的知识进行合理的解释。

数学与生活

迎新年

【知识点】

通过活动,复习分数的认识与加减法的知识内容。

通过活动加深对可能性大小问题的理解,能用分数表示可能性大小,能按指定的可能大小设计方案。

能将所学的知识进行综合,并能解决一些简单的实际问题。

铺地砖

【知识点】

学习综合应用图形面积、乘除法、方程等知识解决简单的实际问题。

小学五年级数学知识点相关文章