《数学美的含义什么是数学美呢【3篇】》
数学美的物质性:数学美的内容――人的本质力量必须通过某种形式呈现出来,必需要有附体,数学美的这种形式或附体,即数学美的物质属性。的小编精心为您带来了数学美的含义什么是数学美呢【3篇】,您的肯定与分享是对小编最大的鼓励。
美得让人晕撅的数学分形几何图形: 篇1
黑格尔说:“美只能在形象中出现。”谈到形象美,一些人便只联想到影视、雕塑或绘画等,而数学离形象美是遥不可及的。其实数学的数形结合,也可以组成世间万物的绚丽画面。
从幼儿时代伊伊学语的“1像小棒、2像小鸭、3像耳朵……”的直观形象,再到小学二、三年级所学的平均数的应用的宏观形象之美——商场货架货物平均间距摆放以及道路植树的平均间距……由平均数的应用给人们带来的美感不胜枚举。再到初中所学的“⊥”(垂直符号),看到这样的符号,就让我们联想起矗立在城市中的高楼大厦或一座屹然峻峭、拔地而起的山峰,给人以挺拔巍峨之美。“—”(水平线条),我们想起静谧的湖面,给人以平静心情的安然之美;看到“~”(曲线线条),我们又有小溪流水、随波逐流的流动乐章之美。到了高中的“∈”(属于符号),更是形象的表现了一种归属关系的美感。还有现在最新研究的数学分形几何图形,简直就是数学上帝造物主的完美之作。
简洁美、严谨美、逻辑美、秩序美 篇2
最具有这一美色的当属欧氏几何学的黄金比例(约0.618),它简直就是宇宙的美神。具有这一特色设计的五角星堪称是一种巫术的设计标志;黄金分割比是解身材优美的密码。由黄金分割引荐的黄金矩形(矩形长、宽比例是黄金比),它在形式比例上具有相当高的美学价值,如生活中的许多物品(国旗、图书、火柴盒等)都采用了这一优美图形。传说中,蒙娜丽纱的脸就是黄金矩形的脸,所以才会留下千古流芳的“蒙娜丽纱微笑”。哪里有黄金比,哪里就有美的闪光。
还有一些优美的曲线是数学形象美与和谐的结合产物。如得之于自然界的四叶玫瑰线、对数螺旋线,还有那久负盛名的莫比乌斯曲线。莫比乌斯曲线的和谐美不仅局限于它的外观,它还体现在“在二维空间里构造一维空间”的合二为一的高度内敛的和谐美。把一个长纸条,一端扭转后再与另一端粘贴起来,那么当一只蚂蚁从纸条任意一点沿着一面出发,却可途经纸条的两面所有路线之后而又回到原点。这一神奇的“合二为一”构造术映射出了一个伟大的数学与交际结合的哲理——化敌为友,敌友一家亲并非妄然。
四叶玫瑰线 :
对数螺旋线:
莫比乌斯曲线:
黄金矩形:
数的外在美,是一种没有经过加工的自然美,毕达哥拉斯将自然界和数统一在一起,他说:凡物皆数。伽利略说:自然这本书是用数学语言写成的。我说:我的人生是数的人生。
秩序美 篇3
对称是美学的基本法则之一,数学中许多轴对称、中心对称图形,都赋予了平衡、协调的对称美。就连一些数学概念本身都呈现了对称的意境——“整—分、奇—偶、和—差、曲—直、方—圆、分解—组合、平行—交叉、正比例—反比例”。自然界中无数原生物也都具有先天性的对称美,例如树叶、花朵、蝴蝶等等。人们根据数学这一美学,设计了许许多多具有这种特征美的产品来,例如房屋、饰品、服装等等。这种美不仅应用在了人们直观视觉里,而且还引申到“非纯对称的相对对称”的文学作品里,文学创作结构讲究“头尾呼应”(即相对对称),情节人物身份或性格也大部分是有着相对对称的特点。