《数学圆知识点总结(优秀7篇)》
漫长的学习生涯中,相信大家一定都接触过知识点吧!知识点就是一些常考的内容,或者考试经常出题的地方。为了帮助大家更高效的学习,问渠那得清如许,为有源头活水来,本文是漂亮的小编帮大伙儿收集整理的数学圆知识点总结(优秀7篇)。
圆知识点总结 篇1
一、主要知识点:
1.点的轨迹是符合某些条件的所有点组成的图形。
注:分析点的轨迹图形时,先描出几个符合条件的点,再猜想这些点会构成什么图形。
2.垂径定理:过圆心且垂直于弦的直线,平分这条弦,且平分弦所对的弧。
注:用于计算时,一般先连结过弦的一个端点的半径,
构造Rt△,再结合勾股定理求解。
3.推论:圆中两平行弦所夹的弧相等。
4.同圆或等圆中,以下四个条件中的一个成立,则它们所对应的其余条件都成立:
(1)弧相等;(2)弦相等;(3)圆心角相等;(4)弦心距相等。
5.圆周角定理:一条弧所对的圆周角=它所对的圆心角的一半。
或:一条弧所对的周角的度数=这条弧的度数的一半。
6.推论1:同弧(或等弧)所对的圆周角相等。
逆:同圆或等圆中,相等的圆周角所对的弧相等。
7.推论2:直径所对的圆周角是直角。
逆:90°的圆周角所对的弦是直径。
8.(1)圆内接四边形,对角互补;
(2)圆内接四边形,任一外角等于它的内对角。
9.圆中要确定圆周角与圆周角(或圆周角与圆心角)的关系通常先观察它们所对的弧。
10.(1)要经过两点作圆,圆心在两点连线段的垂直平分线上;
(2)要作圆经过△的三个顶点,一般先作△两边的垂直平分线,以两线的交点为圆心。
《圆》数学知识点归纳总结 篇2
1、 圆的有关概念:
(1)、确定一个圆的要素是圆心和半径。
(2)①连结圆上任意两点的线段叫做弦。②经过圆心的弦叫做直径。③圆上任意两点间的部分叫做圆弧,简称弧。④小于半圆周的圆弧叫做劣弧。⑤大于半圆周的圆弧叫做优弧。⑥在同圆或等圆中,能够互相重合的弧叫做等弧。⑦顶点在圆上,并且两边和圆相交的角叫圆周角。⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。
2、 圆的有关性质
(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90 。90 的圆周角所对的弦是圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。
(5)定理:不在同一条直线上的三个点确定一个圆。
(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。
(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;
(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。
(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。
(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。
数学圆知识点总结 篇3
一。1、弧长公式
n°的圆心角所对的弧长l的计算公式为L=nπr/180
2、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。
S=﹙n/360﹚πR2=1/2×lR
3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径。
S=1/2×l×2πr=πrl
4.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
5.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:
①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
6.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
4、弦切角定理
弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。
弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。
二。圆周角和圆心角的关系:
1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角。
2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;
推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;
数学圆知识点总结 篇4
高中圆的知识点总结
椭圆的中心及其对称性;判断曲线关于x轴、y轴及原点对称的依据;如果曲线具有关于x轴、y轴及原点对称中的任意两种,那么它也具有另一种对称性;注意椭圆不因坐标轴改变的固有性质。下面是圆的知识点总结。
高中圆的知识点总结
一、教学内容:
椭圆的方程
高考要求:理解椭圆的标准方程和几何性质。
重点:椭圆的方程与几何性质。
难点:椭圆的方程与几何性质。
二、知识点:
1、椭圆的定义、标准方程、图形和性质
定 义第一定义:平面内与两个定点 )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 第二定义:
平面内到动点距离与到定直线距离的比是常数e.(0
标
准
方
程焦点在x轴上
焦点在y轴上
图 形焦点在x轴上
焦点在y轴上
性 质焦点在x轴上
范 围:
对称性: 轴、 轴、原点。
顶点: , .
离心率:e
概念:椭圆焦距与长轴长之比
定义式:
范围:
2、椭圆中a,b,c,e的关系是:(1)定义:r1+r2=2a
(2)余弦定理: + -2r1r2cos(3)面积: = r1r2 sin ?2c| y0 |(其中P( )
三、基础训练:
1、椭圆 的标准方程为
,焦点坐标是 ,长轴长为___2____,短轴长为2、椭圆 的值是__3或5__;
3、两个焦点的坐标分别为 ___;
4、已知椭圆 上一点P到椭圆一个焦点 的距离是7,则点P到另一个焦点5、设F是椭圆的一个焦点,B1B是短轴, ,则椭圆的离心率为6、方程 =10,化简的结果是 ;
满足方程7、若椭圆短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为
8、直线y=kx-2与焦点在x轴上的椭圆9、在平面直角坐标系 顶点 ,顶点 在椭圆 上,则10、已知点F是椭圆 的右焦点,点A(4,1)是椭圆内的一点,点P(x,y)(x0)是椭圆上的一个动点,则 的最大值是 8 .
【典型例题】
例1、(1)已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,短轴长为4,求椭圆的方程。
(2)中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程。
解:设方程为 .
所求方程为(3)已知三点P,(5,2),F1 (-6,0),F2 (6,0).设点P,F1,F2关于直线y=x的对称点分别为 ,求以 为焦点且过点 的椭圆方程 .
解:(1)由题意可设所求椭圆的标准方程为 所以所求椭圆的标准方程为(4)求经过点M( , 1)的椭圆的标准方程。
解:设方程为
例2、如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心) 为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B(离地面最远的点)距地面2384km,并且 、A、B在同一直线上,设地球半径约为6371km,求卫星运行的轨道方程 (精确到1km).
解:建立如图所示直角坐标系,使点A、B、 在 轴上,
则 =|OA|-|O |=| A|=6371+439=6810
解得 =7782.5, =972.5
.
卫星运行的轨道方程为
例3、已知定圆
分析:由两圆内切,圆心距等于半径之差的绝对值 根据图形,用数学符号表示此结论:
上式可以变形为 ,又因为 ,所以圆心M的轨迹是以P,Q为焦点的椭圆
解:知圆可化为:圆心Q(3,0),
设动圆圆心为 ,则 为半径 又圆M和圆Q内切,所以 ,
即 ,故M的轨迹是以P,Q为焦点的椭圆,且PQ中点为原点,所以 ,故动圆圆心M的轨迹方程是:
例4、已知椭圆的焦点是 |和|(1)求椭圆的方程;
(2)若点P在第三象限,且 =120,求 .
选题意图:综合考查数列与椭圆标准方程的基础知识,灵活运用等比定理进行解题。
解:(1)由题设| |=2| |=4
(2)设 ,则 =60-
由正弦定理得:
由等比定理得:
.
说明:曲线上的点与焦点连线构成的三角形称曲线三角形,与曲线三角形有关的问题常常借助正(余)弦定理,借助比例性质进行处理。对于第二问还可用后面的几何性质,借助焦半径公式余弦定理把P点横坐标先求出来,再去解三角形作答
例5、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向 轴作垂线段PP?@,求线段PP?@的中点M的轨迹(若M分 PP?@之比为 ,求点M的轨迹)
解:(1)当M是线段PP?@的中点时,设动点 ,则 的坐标为
因为点 在圆心为坐标原点半径为2的圆上,
所以有 所以点
(2)当M分 PP?@之比为 时,设动点 ,则 的坐标为
因为点 在圆心为坐标原点半径为2的圆上,所以有 ,
例6、设向量 =(1, 0), =(x+m) +y =(x-m) +y |+| (I)求动点P(x,y)的轨迹方程;
(II)已知点A(-1, 0),设直线y= (x-2)与点P的轨迹交于B、C两点,问是否存在实数m,使得 ?若存在,求出m的值;若不存在,请说明理由。
解:(I)∵ =(1, 0), =(0, 1), | =6
上式即为点P(x, y)到点(-m, 0)与到点(m, 0)距离之和为6.记F1(-m, 0),F2(m, 0)(0
|PF1|+|PF2|=6|F1F2|
又∵x0,P点的轨迹是以F1、F2为焦点的椭圆的右半部分。
∵ 2a=6,a=3
又∵ 2c=2m, c=m,b2=a2-c2=9-m2
所求轨迹方程为 (x0,0
( II )设B(x1, y1),C(x2, y2),
而y1y2= (x1-2)? (x2-2)
= [x1x2-2(x1+x2)+4]
[x1x2-2(x1+x2)+4]
= [10x1x2+7(x1+x2)+13]
若存在实数m,使得 成立
则由 [10x1x2+7(x1+x2)+13]=
可得10x1x2+7(x1+x2)+10=0 ①
消去y,得(10-m2)x2-4x+9m2-77=0 ②
因为直线与点P的轨迹有两个交点。
由①、④、⑤解得m2= 9,且此时△0
但由⑤,有9m2-77= 0与假设矛盾
不存在符合题意的实数m,使得
例7、已知C1: ,抛物线C2:(y-m)2=2px (p0),且C1、C2的公共弦AB过椭圆C1的`右焦点。
(Ⅰ)当ABx轴时,求p、m的值,并判断抛物线C2的焦点是否在直线AB上;
(Ⅱ)若p= ,且抛物线C2的焦点在直线AB上,求m的值及直线AB的方程。
解:(Ⅰ)当ABx轴时,点A、B关于x轴对称,所以m=0,直线AB的方程为x=1,从而点A的坐标为(1, )或(1,- ).
此时C2的焦点坐标为( ,0),该焦点不在直线AB上。
(Ⅱ)当C2的焦点在AB上时,由(Ⅰ)知直线AB的斜率存在,设直线AB的方程为y=k(x-1).
因为C2的焦点F( ,m)在y=k(x-1)上。
所以k2x2- (k2+2)x+ =0 ②
设A(x1,y1),B(x2,y2),则x1+x2=
(3+4k2)x2-8k2x+4k2-12=0 ③
由于x1、x2也是方程③的两根,所以x1+x2=
又m=- m= 或m=-
当m= 时,直线AB的方程为y=- (x-1);
当m=- 时,直线AB的方程为y= (x-1).
例8、已知椭圆C: (a0,b0)的左、右焦点分别是F1、F2,离心率为e.直线l:y=ex+a与x轴,y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设 = .
(Ⅰ)证明:(Ⅱ)若 ,△MF1F2的周长为6,写出椭圆C的方程;
(Ⅲ)确定解:(Ⅰ)因为A、B分别为直线l:y=ex+a与x轴、y轴的交点,所以A、B的坐标分别是A(- ,0),B(0,a).
(Ⅱ)当 时, a=2c
由△MF1F2的周长为6,得2a+2c=6
a=2,c=1,b2=a2-c2=3
故所求椭圆C的方程为
(Ⅲ)∵PF1l PF1F2=90BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|,即 |PF1|=C.
设点F1到l的距离为d,由
即当(注:也可设P(x0,y0),解出x0,y0求之)
【模拟试题】
一、选择题
1、动点M到定点 和 的距离的和为8,则动点M的轨迹为
A、椭圆 B、线段 C、无图形 D、两条射线
2、设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是
A、 C、2- -1
3、(高考湖南卷)F1、F2是椭圆C: 的焦点,在C上满足PF1PF2的点P的个数为
A、2个 B、4个 C、无数个 D、不确定
4、椭圆 的左、右焦点为F1、F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为
A、32 B、16 C、8 D、4
5、已知点P在椭圆(x-2)2+2y2=1上,则 的最小值为
6、我们把离心率等于黄金比 是优美椭圆,F、A分别是它的左焦点和右顶点,B是它的短轴的一个端点,则 等于
A、 C、
二、填空题
7、椭圆 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .
8、设F是椭圆 的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2, ),使得|FP1|、|FP2|、|FP3|组成公差为d的等差数列,则d的取值范围是 .
9、设 , 是椭圆 的两个焦点,P是椭圆上一点,且 ,则得 .
10、若椭圆 =1的准线平行于x轴则m的取值范围是
三、解答题
11、根据下列条件求椭圆的标准方程
(1)和椭圆 共准线,且离心率为 .
(2)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为 和 ,过P作长轴的垂线恰好过椭圆的一个焦点。
12、已知 轴上的一定点A(1,0),Q为椭圆 上的动点,求AQ中点M的轨迹方程
13、椭圆 的焦点为 =(3, -1)共线。
(1)求椭圆的离心率;
(2)设M是椭圆上任意一点,且 = 、 R),证明 为定值。
【试题答案】
1、B
2、D
3、A
4、B
5、D(法一:设 ,则y=kx代入椭圆方程中得:(1+2k2)x2-4x+3=0,由△0得: .法二:用椭圆的参数方程及三角函数的有界性求解)
6、C
7、( ;(0, );6;10;8; ; .
10、m 且m0.
11、(1)设椭圆方程 .
所求椭圆方程为 的坐标为
13、解:设P点横坐标为x0,则 为钝角。当且仅当 .
14、(1)解:设椭圆方程 ,F(c,0),则直线AB的方程为y=x-c,代入 ,化简得:
由 =(x1+x2,y1+y2), 共线,得:3(y1+y2)+(x1+x2)=0,
又y1=x1-c,y2=x2-c
3(x1+x2-2c)+(x1+x2)=0, x1+x2=
(2)证明:由(1)知a2=3b2,所以椭圆 可化为x2+3y2=3b2
∵M 2+3
《圆》数学知识点归纳总结 篇5
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心。圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r或r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:
围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π =周长÷直径≈3.14。
所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr。
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径= πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以,圆的面积=圆的周长的一半(πr)×圆的半径(r)。
S圆=πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积=大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
小学数学比和比例知识点
1、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。
比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
2、比和比例的区别
(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比。比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。
比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。
比例的`性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。
数学分数的基本性质
分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。
联系分数与除法的关系以及“商不变”的规律,来理解分数的基本性质。
分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。
运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
《圆》数学知识点归纳总结 篇6
集合:
圆:圆可以看作是到定点的距离等于定长的点的集合;
圆的外部:可以看作是到定点的距离大于定长的点的集合;
圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹:
1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;
2、到线段两端点距离相等的点的轨迹是:线段的中垂线;
3、到角两边距离相等的点的轨迹是:角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
圆周角定理推论:
圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。
①圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。
②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。
③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。(不在同圆或等圆中其实也相等的。注:仅限这一条。)
④半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。
⑤圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
⑥在同圆或等圆中,圆周角相等<=>弧相等<=>弦相等。
圆周运动
1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
2、描述匀速圆周运动快慢的物理量
(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上,匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。
(2)角速度 :ω=φ/t(φ指转过的角度,转一圈φ为 ),单位 rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的
(3)周期T,频率f=1/T
(4)线速度、角速度及周期之间的关系: 3、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
4、向心加速度:描述线速度变化快慢,方向与向心力的方向相同,
5,注意的结论:
(1)由于 方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
6、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。
《圆》数学知识点归纳总结 篇7
一、认识圆
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形
只有3条对称轴的图形是:等边三角形
只有4条对称轴的图形是:正方形;
有无数条对称轴的图形是:圆、圆环。
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
2、圆周率实验:
在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。在计算时,一般取π≈3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C=πdd=C÷π
或C=2πrr=C÷2π
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)周长的一半:等于圆的周长÷2计算方法:2πr÷2即πr
(2)半圆的周长:等于圆的周长的一半加直径。计算方法:πr+2r