《八年级数学下册教案9篇》
总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以给我们下一阶段的学习和工作生活做指导,让我们一起来学习写总结吧。你所见过的总结应该是什么样的?这次帅气的小编为您整理了八年级数学下册教案9篇,希望可以启发、帮助到大家。
八年级数学下册教学工作总结 篇1
本学期,本人担任八年级两个班数学学科的工作。一学期来,本人以学校及各处组工作计划为指导;以加强师德师风建设,师德水平为重点,以提高教育教学成绩为中心,以深化课改实验工作为动力,认真履行岗位职责,较好地完成了工作目标任务,现将一学期来的工作总结如下:
一、加强,努力提高自身素质
一方面,认真学习教师职业道德规范、,不断提高自己的道德修养和政治理论水平;另一方面,认真学习新课改理论,努力提高业务能力。通过学习,转变了以前的工作观、观,使我对新课改理念有了一个全面的、深入的理解,为本人转变教学观念、改进教学方法打好了基础。
二、以身作则,严格遵守工作纪律
一方面,在工作中,本人能够严格要求自己,模范遵守学校的各项规章制度,做到不迟到、不早退,不旷会。另一方面,本人能够严格遵守教师职业道德规范,关心爱护学生,不体罚,变相体罚学生,建立了良好的师生关系,在学生中树立了良好的形象。
三、强化常规,提高课堂教学效率
本学期,本人能够强化教学常规各环节:在课前深入钻研、细心挖掘教材,把握教材的基本思想、基本概念、教材结构、重点与难点;了解学生的知识基础,力求在备课的过程中即备教材又备学生,准确把握教学重点、难点,不放过每一个知识点,备写每一篇教案;在课堂上,能够运用多种教学方法,利用多种教学手段,充分调动学生的多种感官,激发学生的学习兴趣,向课堂40分要质量,努力提高课堂教学效率;在课后,认真及时批改作业,及时做好后进学生的思想工作及课后辅导工作;在自习课上,积极落实分层施教的原则,狠抓后进生的。转化和优生的培养;同时,进行阶段性检测,及时了解学情,以便对症下药,调整教学策略。认真参加教研活动,积极参与听课、评课,虚心向同行学习,博采众长,提高教学水平。一学期来,本人共听课10节,完成了学校规定的听课任务。
四、加强研讨,努力提高教研水平
本学年,本人参加省级教研课题“开放性问题学习的研究”的子课题及县级课题开放性教学课型的研究的子课题的研究工作,积极撰写课题实施方案,撰写个案、教学心得体会,及时总结研究成果,撰写论文,为课题研究工作积累了资料,并积极在教学中进行实践。在课堂教学中,贯彻新课改的理念,积极推广先进教学方法,在推广目标教学法、读书指导法等先进教法的同时,大胆进行自主、合作、探究学习方式的尝试,充分发挥学生的主体作用,使学生的情感、态度、价值观等得到充分的发挥,为学生的终身可持续发展打好基础。
五、正视自我,明确今后努力方向
本次期末考试,我所带班成绩相对其它平行班而言,有一定的差距,本人认真进行了反思,原因主要有以下几个方面:
1、在课堂教学中充分利用多媒体课件,调动了学生的积极性,但对学生基础知识的训练不够,致使课堂教学效率不高;
2、对知识点的检查落实不到位;
3、对差生的说服教育缺乏力度,虽然也抓了差生,但没有时时抓在手上。
4、教学中投入不够,没能深入研究教材及学生。
下学期改进的措施:
1、进一步加强对新课改的认识,在推广先进教学方法、利用多媒体调动学生学习积极性的同时,努力提高课堂教学的效率。
2、狠抓检查,落实对知识点的掌握。将差生时时放在心上,抓在手上;
3、加强学生的阅读训练,开阔学生的视野,拓宽学生思路,提高学生解决问题的能力;
4、采取措施,加强训练,落实知识点。
5、加强对学生的管理教育,努力教学提高成绩。
6、群体育人方面的工作还需要进一步加强。特加是要加强与班主任之间的联系,共同解决所任班级班风学风方面存在的问
本文来自学习网(),原文地址:/essay/summary/jsgzzj/200905/36091.htm
9年级下册数学课件 篇2
小学课件数学下册
小学课件数学下册:立方厘米、立方分米、立方米
教学目标:
1、初步认识体积单位:立方厘米、立方分米、立方米。
2、掌握立方厘米、立方分米、立方米之间的进率。
3、会进行简单的体积单位之间的化聚。
4、让学生自主探究,掌握立方厘米、立方分米、立方米之间的进率。
5、通过实际的操作过程,体验学习的快乐。
教学重难点:
掌握常用的体积单位的进率,会进行简单的化聚。
教学准备:
教学课件、小正方体等
教学过程:
一、情景导入
通过课件出示1立方厘米的正方体。
师:请同学们动手量一量桌上这块白色积木的每条棱长是多少?是正方体吗?
师:这块白色积木是棱长为1厘米的正方体。
【说明:让学生测量小正方体的棱长,激发学生学习的积极性。】
二、探究新知
(一)让学生体验1立方厘米。
1、这块小正方体的体积有多大呢?(课件演示)
2、师:刚才同学们量的这个棱长为1厘米的小正方体,它的体积就是1立方厘米,可以记作1cm3。
板书:1立方厘米 1cm3 3、请学生感受一下1立方厘米的大小。
【说明:通过实物感受1立方厘米,并掌握1立方厘米的记作方法。】
(二)搭一搭
1、2个1立方厘米
(1) 请同学们用2个1立方厘米的正方体搭一搭。
(2) 师:它的体积有多大呢?还可以怎样搭一搭?
(3) 师小结:用2个1立方厘米的正方体积木搭出的立体图形,它的体积就是 2立方厘米,也可以记住2cm3。
2、3个1立方厘米
(1) 师:请同学们用3个1立方厘米的正方体搭一搭。
(2) 师:它的体积有多大呢?可以怎样搭一搭?
生:用3个1立方厘米的正方体积木搭出的立体图形,它的`体积就是(3)立方厘米,也可以记作(3cm3 )。
(3) 请同学们展示搭出的各种形状。
(4) 小结。
【说明:通过用体积为1立方厘米的正方体积木搭出各种不同的立体来进一步积累体积的经验。】
三、试一试
(一)搭一搭
1、小胖用5~6块1立方厘米的正方体积木搭出如下立体图形,哪些立体图形的体积是5立方厘米?哪些是6立方厘米?
⑴学生可以利用学具实际操作来帮助理解。
⑵让学生把5~6块的小正方体排列成其他形状,请互相讲出体积有多少?
⑶小结。
(二)比一比
1、下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件演示)
⑴学生独立完成,可以借助旁边的学具帮助理解。
⑵讨论交流,请学生说一说你是怎么想得?
⑶小结。
(三)巩固练习
1、请比一比图中每个积木块的体积都是1立方厘米,甲乙两个立体图形的体积是不是一样大?
2、小丁丁用1立方厘米的正方体积木排出下面的图形,你知道他是怎样排的,你是怎么知道它的体积? 小丁丁是这样排列的: 用16个1立方厘米正方体积木块排出最下一层, 再用12个1立方厘米正方体积木块排出第二层, 再用8个1立方厘米正方体积木块排出第三层, 再用4个1立方厘米正方体积木块排出第四层, 它一共由40个1立方厘米正方体积木块组成,体积是40立方厘米。
3、小结。
四、总结
师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?你对你今天的学习评价如何?
【说明:二期课改强调对学生的评价,学生能够通过自我的评价,相互的评价和教师的评价有机结合,能够全面的反映学生的学习情况和状态。】
六年下册数学课件 篇3
教学目标:
1.通过拼、摆、画各种图形,使学生直观感受各种图形的特征。
2.培养学生初步的观察能力、动手操作能力和用数学交流的能力。
3.能辨认各种图形,并能把这些图形分类。
教学重点:
初步认识长方形、正方形、圆形和三角形的实物与图形。
教学难点:
初步认识长方形、正方形、圆形和三角形的实物与图形。
教学准备:图形卡纸、实物、学具等。
教学过程:
一、复习,探究新知:
1.小朋友们还记得这些图形朋友吗? (长方体 正方体 球 圆柱)
2.你能把这些图形平平的面画下来吗?学生在纸上画一画
3.你们画下的图形有什么特点?
学生小组讨论并且小组小结最后派代表全班交流
不同点: 共同点:
长方形 对边相等 4个角都是直直的平面的
正方形 4边相等 4个角都是直直的 不断开的
圆 没有角 即封闭的)
三角形 有三条边 三个角
二、巩固发展:
1.说一说,你身边哪些物体的面是你学过的图形?
2.用圆、正方形、长方形、三角形画一画自己喜欢的图形?
小组内评一评,各小组展示作品。
3.练习一第1题
请小朋友涂一涂圆、正方形、长方形、三角形知道各涂什么颜色吗?小组讨论合作,反馈汇报哪些涂成黄色,哪些涂成蓝色,哪些涂成紫色,哪些涂成红色?
4.用圆、正方形、长方形、三角形拼一拼图形。
同桌合作比一比哪一桌拼的最好?全班交流展示。
5.第2题:数一数有几个圆、正方形、长方形、三角形?
独立完成 ,说说你是怎么数的?有什么好方法?
小结方法。
三、提高练习:
取长方形纸一张,对折再对折
取正方形纸一张,对折再对折
取正方形纸一张,对角折再对角折
观察结果
四、总结:今天你们学到了什么?
长方形、正方形、三角形、圆个有什么特点?
你有什么想问的?
八年级数学下册教案 篇4
教学准备
教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.
学生准备:复习平行四边形性质;学具:课本“探究”内容.
学法解析
1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.
2.知识线索:
3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.
教学过程
一、回顾交流,逆向思索
教师提问:
1.平行四边形定义是什么?如何表示?
2.平行四边形性质是什么?如何概括?
学生活动:思考后举手回答:
回答:1.两组对边分别平行的`四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)
回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).
教师归纳:(投影显示)
平行四边形【活动方略】
教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.
学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:
(1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;
(2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.
(3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级下册音乐课件 篇5
八年级下册音乐课件
教学目标:
一、通过学习歌曲和欣赏曲,领悟“保护环境、关爱地球、热爱大自然”这一人类共同主题,增强“热爱祖国、建设祖国、热爱自然、爱护自然”的意识。
二、懂得音乐能够表现自然界的美景。
教学重点、难点:
领悟“保护环境、关爱地球、热爱大自然”这一人类共同主题,增强“热爱祖国、建设祖国、热爱自然、爱护自然”的意识。
教学过程:
一、组织教学
学生听管弦乐《九寨沟音画》进教室
二、新课教学
1、学习管弦乐《九寨沟音画》
导语:老师带领大家去看一个地方,请欣赏九寨沟的宣传片(学生看着美丽的风景啧啧称赞)
2、欣赏管弦乐《大峡谷组曲·日出》
导语:再请大家欣赏音乐片段,你能想象音乐所描绘的画面(学生边听边想象)
(1)学生讨论、交流音乐所描绘的情景
(2)师总结:刚才欣赏的《九寨沟音画》和管弦乐《大峡谷组曲·日出》都向我们描绘了
美的大自然的情景。但我们知道,现在的环境污染越来越严重,作为新世纪的少年,我们该怎么做,请听歌曲《给未来一片绿色》。
3、学习歌曲《给未来一片绿色》
(1)教师范唱(独唱,演唱高声部)
(2)有感情的朗诵歌词
(3)听录音范唱提出问题:这首歌曲可分几部分?每一部分的。情绪怎样?从歌曲中感受到、体验到什么?
(4)学生交流讨论、谈感受、体验。
(5)我们能和着歌曲《给未来一片绿色》作些动作吗?(学生可站着、可坐在自己的座位上、也可走出座位,随意的表演)
(6)跟着钢琴试唱歌曲《给未来一片绿色》,(解决难点,如弱起、休止符等)
三、布置作业:
你知道我国有哪些著名的地方被列入世界人类自然遗产名录?试用你熟悉的音乐和其他的艺术形式介绍给大家。
八年级数学下册教案 篇6
一、教学目标
1.掌握一元二次方程的定义,能够判断一个方程是否是一元二次方程。
2.能够将一元二次方程化为一般形式并确定a,b,c的值。
二、(重)难点预见
重点:知道什么叫做一元二次方程,能够判断一个方程是否是一元二次方程。 难点:能够将一元二次方程化为一般形式并确定a,b,c的值。
三、学法指导
结合教材和预习学案,先独立思考,遇到困难小对子之间进行帮扶,完成学习任务。
四、教学过程
开场白设计:
一元二次方程是初中数学中非常重要的内容,它在实际生活中有着非常广泛的应用。什么形式的方程是一元二次方程?这样的方程怎么解答呢?它又能解决哪些问题呢?带着这些问题,让我们一起学习《一元二次方程》这一章,今天我们来学习第一节课,同学们肯定有很多新的收获。
1、忆一忆
在前面我们曾经学习了什么叫做一元一次方程?一元指的`是什么含义?一次呢?你能猜想什么叫做一元二次方程吗?
学法指导:
本节课学习一元二次方程先让学生回忆一元一次方程。学习四边形可以让学生回忆三角形,学习四边形的边、角、顶点,可以让学生回忆三角形的边、角、顶点,则可达到水到渠成的效果。
2、想一想
请同学们根据题意,只列出方程,不进行解答:
(1)一个矩形的长比宽多2cm,矩形的面积是15cm,求这个矩形的长和宽。
(2)两个连续正整数的平方和是313,求这两个正整数。
(3)直角三角形三边的长都是整数,它的斜边长为13cm,两条直角边的差为7cm,求两条直角边的长。
预习困难预见:
(1)学生在列方程时没有搞清楚“平方和”与“和的平方”的区别,以至于把方程列错了。
(2)学生在解答第(3)题时,设未知数时忘记带单位。
(3)还有的同学没有注意只列方程,以至于学生列出方程后尝试着解方程,导致耽误了一些时间。
改进措施:
教师巡视指导,发现失误及时引导;小组内互查,辩论,质疑。
3、议一议
请同学们将上面的方程按照以下要求进行整理:
(1)使方程的右边为0(2)方程的左边按x的降幂排列。我们会得到:
① ② ③
你能发现上面三个方程有什么共同点?
_____________________叫做一元二次方程。在定义中着重强调了几点?哪几点?如果给你一个方程,让你判定它是否是一元二次方程,你关键看哪几方面?
学法指导
学习一元二次方程的概念,让同学们剖析定义,总结判定一个方程是否是一元二次方程的方法。
4、试一试
下面方程是一元二次方程吗?为什么?
①ax-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0
方法提升:
由一元二次方程的定义可知,只有同时满足下列三个条件:①整式方程;②只含有一个未知数;③未知数的最高次数是2,这样的方程才是一元二次方程,否则缺少其中任何一个条件的方程都不是一元二次方程。
口诀生成:
判断一元二次方程并不难,三个条件要找全:一元,二次,整式判,正确答案就出现。
5、学一学
一元二次方程都可以化为ax+bx +c =0(a,b,c为常数,a≠0)的形式,称为一元二次方程的一般形式,其中ax,bx,c 分别称为这个方程的二次项,一次项和常数项,a,b分别称为二次项系数,一次项系数。你能指出下列方程的二次项系数,一次项系数,常数项吗?请你用a,b,c表示出来。
7年级下册数学课件 篇7
3年级数学课件下册
1.位置:所在或所占的地方。
2.方向:指东,西,南,北等方位。
3.除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c/b,读作c除以b(或b除c)。其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
4.除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
5.商不变性质:被除数和除数同时乘或除以一个非零自然数,商不变。
6.除法的性质:一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)。
7.被除数、除数、商的关系:
被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。
除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
8.笔算除法:先按照整数除法的法则去除,商的小数点要和被除数的'小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
9.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
10.没有括号的混合运算:
同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
11.第一级运算:加法和减法叫做第一级运算。
12.第二级运算:乘法和除法叫做第二级运算。
13.数据:数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
14.数据分析:数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。
15.数据分析的步骤和应用:
数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:
(1)探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
(2)模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
(3)推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。
16.平均数
平均数是指在一组数据中所有数据之和再除以数据的个数。平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标。
解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。
在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
17.二十四时计时法
(1)分段计时法(十二时计时法):深夜12时是一日的开始,1天的24小时又分为两段,每段12小时。从深夜12时起到中午12时叫做上午,再从中午12时起到深夜12时叫做下午。生活中通常采用这种计时法。
(2)二十四时计时法:这是是广播电台、车站、邮电局等部门采用的0到24时计时法,按照这种计时法,下午1时就是13:00,下午2时就是14:00……夜里12时就是24:00,又是第二天的0:00.
18.乘法算式中各数的名称
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
10(因数)×(乘号)200(因数)=(等于号)2000(积)
19.乘法的运算定律
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展,运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。最有名的非交换例子,就是哈密尔顿发现的四元数群。但是结合律仍然满足。
(1)乘法交换律:a×b=b×a
(2)乘法结合律:(a×b)×c=a×(b×c)
(3)乘法分配律:(a+b)×c=a×c+b×c
20.乘法表
21.面积:物体的表面—平面图形的大小,叫做它们的面积
22.常用的面积单位有平方厘米、平方分米和平方米。
(1)边长是1厘米的正方形,面积是1平方厘米。
(2)边长是1分米的正方形,面积是1平方分米。
(3)边长是1米的正方形,面积是1平方米。
23.一般测量较大的面积用到公顷和平方千米。
(1)边长是100米的正方形,面积是1公顷。
(2)边长是1千米的正方形,面积是1平方千米。
24.面积计算方法
长方形:S=ab{长方形面积=长×宽}
正方形:S=a2{正方形面积=边长×边长}
平行四边形:S=ab{平行四边形面积=底×高}
三角形:S=ab÷2{三角形面积=底×高÷2}
梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2}
圆形(正圆):S=πr2{圆形(正圆)面积=圆周率×半径×半径}
25.面积计量单位及进率:
1平方千米(k㎡)=100公顷(ha)1平方千米=1000000平方米(㎡)
1公顷=10000平方米1平方米=100平方分米(d㎡)
1平方分米=100平方厘米(c㎡)。
26.公顷:公顷的单位符号用“h㎡”表示,其中h表示百米,h㎡的含义就是百米的平方,也就是10000平方米,即1公顷。
27.小数:小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数小数是十进制分数的一种特殊表现形式。分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。
28.小数的基本性质:小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。
29.小数写法:整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。
30.小数的读法:
(1)按照分数的读法来读。带小数的整数部分按整数读法读;小数部分按分数读法读。
例如:0.38读作百分之三十八,14.56读作十四又百分之五十六。
(2)整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个0.
例如:0.45读作零点四五;56.032读作五十六点零三二;1.0005读作一点零零零五。
大班下册数学课件 篇8
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力。
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答。这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识。但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用。同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。
通过四个例子引出课题。
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值。程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的'对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的。大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”。但是怎样证明这个命题呢?学生这时的思维很活跃。对于这个问题,部分学生可能能解决它。因此教师此时应让学生展开讨论,独立完成。
2.学生经过研究,也许能解决这个问题。若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上。这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1‖B2C2‖B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值。
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。
而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来。
(四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道。今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的。如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了。看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下。通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣。
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。
八年级数学下册教案 篇9
一、教学目标
(一)教学知识点
1.掌握三角形相似的判定方法2、3.
2.会用相似三角形的判定方法2、3来判断、证明及计算。
(二)能力训练要求
1.通过自己动手并总结推出相似三角形的判定方法2、3,培养学生的动手操作能力,总结概括能力。
2.利用相似三角形的判定方法2、3进行判断,训练学生的灵活运用能力。
(三)情感与价值观要求
1.通过探索相似三角形的判定方法2、3,体现数学活动充满着探索性和创造性。
2.通过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理能力,领会分类思想。
二、教学重难点
教学重点:相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活运用。教学难点:判定方法的推导及运用
三、教学过程设计
(一)创设情境,引入新课
投影片
[生]有四对相似三角形,它们是△AEF∽△DEC,△AFB∽△ACD,△AEB∽△CED,△AEF∽△EBA.他们相似的理由都是用相似三角形的判定方法1.
[师]现在我们已经有两种方法可以判定两个三角形相似,一种是定义,一种是判定方法1,除此之外,是否还有其他的办法来判定两个三角形相似?这一问题就是本节课我们需要研究的问题。
(二)新课讲授
[师]相似三角形的判定方法1是只从角的方面考虑的,下面我们只从边的方面去考虑。我们在学习全等三角形的判定方法中,也有只用边来进行判断的,即SSS公理。大家能不能用类比的方法,猜想只用边来判定三角形相似的方法呢?
[生]三边对应成比例的两个三角形相似。
[师]下面我们就来验证一下。
1.相似三角形的判定方法2:三边对应成比例的两个三角形相似。
投影片
个组取一个相同的k值,不同的组取不同的k值,好吗?
[生]好。
[师]经过大家的亲身参与体会,你们得出的结论是什么呢?
[生]结论为∠A=∠A′,∠B=∠B′,∠C=∠C′
△ABC∽△A′B′C′,理由是:
∠A=∠A′,∠B=∠B′,∠C=∠C′
根据相似三角形的定义可知:△ABC∽△A′B′C′.
[师]其他组的同学的结论相同吗?
[生]相同。
[师]经过大家的探讨,我们又掌握了一种相似三角形的判定方法,即三边对应成比例的两个三角形相似。
2.相似三角形的判定方法3.
[师]前面两种判定方法我们都是只从角或只从边的方面去考虑的,下面我们要从两方面来考虑。还是要类比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我们就不用考虑了,因为我们已经有判定方法1、3,下面来验证SAS,大家还是先猜想,然后再验证。
[生]两边对应成比例且夹角相等的两个三角形相似。
[师]好,下面我们还是由大家自己推导吧。请看投影片
[师]请大家按照上面的步骤进行,同时还要采取不同的组取不同的值法。
[生]按照要求作出的△ABC与△A′B′C′中,有∠B=∠B′,∠C=∠C′,因此根据判定方法1可知,△ABC∽△A′B′C′.
[师]大家同意吗?
[生]同意。
[师]好,我们又探索出一个相似三角形的。判定方法,即两边对应成比例且夹角相等的两个三角形相似。
3.想一想
107
[师]下面验证SSA,即两边对应成比例,其中一边的对角对应相等,这两个三角形相似吗?
在全等三角形的判定中SSA就不成立。大家还可以仿照上面的验证过程来进行推导,下面是小明和小颖分别画出的一个满足条件的三角形,由此你能得到什么结论?
[生]从上面的图中可以得出结论:有两边对应成比例,其中一边的对角相等的三角形不相似。
4.做一做
[师]在这两节课中我们已经学完了一般相似三角形的判定方法,下面请大家总结一下有几种方法。
[生]一共有四种方法。
第一种:对应角相等,对应边成比例的两个三角形相似。即定义法。
第二种:即判定方法1
两角对应相等的两个三角形相似。
第三种:即判定方法2
三边对应成比例的两个三角形相似。
第四种:即判定方法3
两边对应成比例且夹角相等的两个三角形相似。
[师]从这四种方法中我们可以看出,第一种判定方法比较麻烦,需要研究三对角、三对边,而后面的几种方法最多只需要研究三对边或角,因此定义法一般不利用。如果已知条件只涉及角,就用第二种判定方法;如果已知条件只涉及边,就用第三种判定方法;如果既有角又有边,则可考虑用第四种方法判断。
5.议一议
如图,△ABC与△A′B′C′相似吗?你有哪些判断方法?
[生]解:△ABC∽△A′B′C′.
判断方法有。
1.三边对应成比例的两个三角形相似。
2.两角对应相等的两个三角形相似。
3.两边对应成比例且夹角相等。
4.定义法。
(三)巩固应用,拓展研究
下面每组的两个三角形是否相似?为什么?
生]解:(1)△ABC∽△DEF
∵
∴△ABC∽△DEF
(2)在△ABC中
AB=2,AC=6
∵∠A=∠A
∴△ABC∽△AEF
(四)练习巩固,促进迁移
依据下列各组条件,判定△ABC与△A′B′C′是不是相似,并说明为什么。
(1)∠A=120°,AB=7 cm,AC=14 cm,
∠A′=120°,A′B′=3 cm,A′C′=6 cm,
(2)AB=4 cm,BC=6 cm,AC=8 cm,
A′B′=12 cm,B′C′=18 cm,A′C′=24 cm.解:
又∵∠A=∠A′
∴△ABC∽△A′B′C′(两边对应成比例且夹角相等,两三角形相似)
∴△ABC∽△A′B′C′(三边对应成比例,两三角形相似)
(五)回顾联系,形成结构
本节课主要探讨了相似三角形的另两种判定方法,即三边对应成比例与两边对应成比例且夹角相等的两个三角形相似。培养了大家的探索精神,同时让学生懂得了数学活动充满着探索与创新,学习的目的是能运用学过的知识去解决问题,在这里就是能利用判定方法进行有关证明。