首页 > 教学教案 > 初中教案 > 初二教案 > 八年级数学函数教案(热门2篇)正文

《八年级数学函数教案(热门2篇)》

时间:

教案在教学系统中起到主线贯穿的作用,以下是小编要与大家分享的:八年级数学函数教案,供大家参考!

八年级数学函数教案1

知识点2 总体、个体、样本

调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体.

例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体.

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本.

例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本.

知识点3 中位数的概念

将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.

知识点4 众数的概念

一组数据中出现次数最多的数据就是这组数据的众数.

例如:求一组数据3,2,3,5,3,1的众数.

解:这组数据中3出现3次,2,5,1均出现1次.所以3是这组数据的众数.

又如:求一组数据2,3,5,2,3,6的众数.

解:这组数据中2出现2次,3出现2次,5,6各出现1次.

所以这组数据的众数是2和3.

【规律方法小结】(1)平均数、中位数、众数都是描述一组数据集中趋势的量.

(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量.

(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势.

(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据.

探究交流

1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?

解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中.

总结:(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据.

(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列).若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。

(3)中位数的单位与数据的单位相同.

(4)中位数与数据排序有关.当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势.

课堂检测

基本概念题

1、填空题.

(1)数据15,23,17,18,22的平均数是 ;

(2)在某班的40名学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人,则这个班学生的平均年龄约是_________;

(3)某一学生5门学科考试成绩的平均分为86分,已知其中两门学科的总分为193分,则另外3门学科的分为________;

(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________.

基础知识应用题

2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:

20,23,26,25,29,28,30,25,21,23.

(1)计算这10个班次乘车人数的平均数;

(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少.

八年级数学函数教案2

一、学情分析

认知基础:学生在七年级下册第四章已学习了《变量之间的关系》,对变量间互相依存的关系有了一定的认识,但对于变量间的变化规律尚不明确,理解的很肤浅,也缺乏理论高度,另外本章在认知方式和思维深度上对学生有较高的要求,学生在理解和运用时会有一定的难度。

活动经验基础:在七年级下册《变量之间的关系》一章中,学生接触了大量的生活实例额,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。

二、教学目标:

知识与技能目标:

(1)初步掌握函数概念,能判断两个变量之间的关系是否可以看作函数。

(2)根据两个变量之间的关系式,给定其中一个变量的值相应的会求出另一个变量的值。

(3)会对一个具体实例进行概括抽象成为函数问题。

过程与方法目标:

(1)通过函数概念初步形成利用函数的观点认识现实世界的意识和能力。

(2)经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感态度与价值观目标:

(1)经历函数概念的抽象概括过程,体会函数的模型思想。

(2)能主动从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。