首页 > 教学教案 > 初中教案 > 初三教案 > 人教版九年级数学上册教案【优秀10篇】正文

《人教版九年级数学上册教案【优秀10篇】》

时间:

作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?的小编精心为您带来了人教版九年级数学上册教案【优秀10篇】,您的肯定与分享是对小编最大的鼓励。

最新九年级上册数学教案 篇1

一、基本情况:

本学期是初中学习的关键时期本学期我担任初三年级(29、30)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的`高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。

二、指导思想:

初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

三、教学内容:

本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。

四、教学目的:

在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。

在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。

五、教学措施:

针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。

2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

4、新课教学中涉及到旧知识时,对其作相应的复习回顾。

5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

新人教九年级数学上册教案 篇2

教学目标:

1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围。

3、会求函数值,并体会自变量与函数值间的对应关系。

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法。

5、通过函数的教学使学生体会到事物是相互联系的。是有规律地运动变化着的。

教学重点:了解函数的意义,会求自变量的取值范围及求函数值。

教学难点:函数概念的抽象性。

教学过程:

(一)引入新课:

上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有的值与它对应,那么就说x是自变量,y是x的函数。

生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系。

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系。

解:1、y=30n

y是函数,n是自变量

2、 ,n是函数,a是自变量。

(二)讲授新课

刚才所举例子中的函数,都是利用数学式子即解析式表示的。这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义。如第一题中的学生数n必须是正整数。

例1、求下列函数中自变量x的取值范围。

(1)   (2)

(3)   (4)

(5)   (6)

分析:在(1)、(2)中,x取任意实数, 与 都有意义。

(3)小题的 是一个分式,分式成立的条件是分母不为0.这道题的分母是 ,因此要求 .

同理(4)小题的 也是分式,分式成立的条件是分母不为0,这道题的分母是 ,因此要求 且 .

第(5)小题, 是二次根式,二次根式成立的条件是被开方数大于、等于零。 的被开方数是 .

同理,第(6)小题 也是二次根式, 是被开方数,

.

解:(1)全体实数

(2)全体实数

(3)

(4) 且

(5)

(6)

小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零。

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要 即可。教师可将解题步骤设计得细致一些。先提问本题的分母是什么?然后再要求分式的分母不为零。求出使函数成立的自变量的取值范围。二次根式的问题也与次类似。

但象第(4)小题,有些同学会犯这样的错误,将答案写成 或 .在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用。限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”。说明这里 与 是并且的关系。即2与-1这两个值x都不能取。

例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元。

(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;

(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。

解:(1)

(x是正整数,

(2)若变速车的辆次不小于25%,但不大于40%,

收入在1225元至1330元之间

总结:对于反映实际问题的函数关系,应使得实际问题有意义。这样,就要求联系实际,具体问题具体分析。

对于函数 ,当自变量 时,相应的函数y的值是 .60叫做这个函数当 时的函数值。

例3、求下列函数当 时的函数值:

(1)   (2)

(3)   (4)

解:1)当 时,

(2)当 时,

(3)当 时,

(4)当 时,

注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有确定的值与之对应。以此加深对函数的理解。

(二)小结:

这节课,我们进一步地研究了有关函数的概念。在研究函数关系时首先要考虑自变量的取值范围。因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值。另外,对于反映实际问题的函数关系,要具体问题具体分析。

作业:习题13.2A组2、3、5

内容和内容解析 篇3

(一)内容

一元二次方程的概念,一元二次方程的一般形式。

(二)内容解析

一元二次方程是方程在一元一次方程基础上 “次”的推广,同时它是解决诸多实际问题的需要,为勾股定理、相似等知识提供运算工具,是二次函数的基础。

针对一系列实际问题,建立方程,引导学生观察这些方程的共同特点,从而归纳得出一元二次方程的概念及一般形式。在这个过程中,通过归纳具体方程的共同特点,得出一元二次方程的概念,体现了研究代数学问题的一般方法;一般形式ax2+bx+c=0也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果;a≠0的条件是确保满足 “二次”的要求,从另一个侧面为理解一元二次方程的概念提供了契机。

九年级上册数学的教案 篇4

旋转

1、旋转的三要素:旋转中心,旋转方向,旋转角。

2、旋转的性质:①对应点到旋转中心的距离相等,②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等。

关键:找好对应线段、对应角。

3、中心对称:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称。

4、中心对称的性质:①关于中心对称的两个图形,对应点所连线段都经过对称中心,而且被对称中心所平分。②关于中心对称的两个图形是全等形。

5、中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

6、对称点的坐标规律:①关于x轴对称:横坐标不变,纵坐标互为相反数,②关于y轴对称:横坐标互为相反数,纵坐标不变,③关于原点对称:横坐标、纵坐标都互为相反数。

初三的上册数学教案 篇5

1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。

2.通过复习  pin移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题。

3.旋转的基本性质。

重点

旋转及对应点的有关概念及其应用。

难点

旋转的基本性质。

一、复习引入

(学生活动)请同学们完成下面各题。

1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形。

2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.

3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质。

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质。

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复习  平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。

1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心。从现在到下课时针转了________度,分针转了________度,秒针转了________度。

2.再看我自制的好像风车风轮的玩具,它可以不停地转动。如何转到新的位置?(老师点评略)

3.第1,2两题有什么共同特点呢?

共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度。

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

下面我们来运用这些概念来解决一些问题。

例1 如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A,B分别移动到什么位置?

解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角。

(2)经过旋转,点A和点B分别移动到点E和点F的位置。

自主探究:

请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板。

(分组讨论)根据图回答下面问题(一组推荐一人上台说明)

1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?

2.∠AOA′,∠BOB′,∠COC′有什么关系?

3.△ABC与△A′B′C′的形状和大小有什么关系?

老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等。

2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角。

3.△ABC和△A′B′C′形状相同和大小相等,即全等。

综合以上的实验操作得出:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

例2 如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形。

分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示。

解:(1)连接CD;

(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;

(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;

(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形。

三、课堂小结

(学生总结,老师点评)

本节课应掌握:

1.对应点到旋转中心的距离相等;

2.对应点与旋转中心所连线段的夹角等于旋转角;

3.旋转前、后的图形全等及其它们的应用。

四、作业布置

教材第62~63页 习题4,5,6.

目标和目标解析 篇6

(一)教学目标

1、体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念;

2、了解一元二次方程的一般形式,会将一元二次方程化成一般形式。

(二)目标解析

1、通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程。学生能举例说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性;

2、将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善一元二次方程的概念。学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件。

数学九年级上册优秀教案 篇7

教学目标

知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。 过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。 情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。

教学重难点

教学重点:理解生活中常见的百分率的含义。

教学难点:正确计算常见的百分率。

教学过程

一、创设情境,探究导入

1、课件出示

看图,回答下面的问题。

(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

2、百分数的意义

我们班有36%的学生参加了美术兴趣小组。

世界总人口中大约有50%的人口年龄低于25岁。

一瓶农夫果园饮料中果汁含量大约是10%。

我们班学生的近视率是45%。

3、小刚做了10道题,错了2道

做对的题数占总题数的几分之几?

做错的题数占总题数的几分之几?

做对的题数占总题数的百分之几?

做错的题数占总题数的百分之几?

求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b

4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几? 六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的 百分之几?

学生独立思考、同桌交流:尝试计算,得出结论。

5、谈话,导入新课

在我们的日常生活中像这样的百分率还有很多,如发芽率、及格率、出米率等,它可以帮助我们解决生活中的一些实际问题。

下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。

二、学习新知

1、教学例1——在具体情境中认识百分率,探究计算方法

(1)出示例1:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。六年级学生的达标率是多少?

(2)学生读题,分析题意,思考达标率的含义,尝试计算。

(3)指名板演并交流思维过程,集体订正。

(4)教师小结

指导学生明确达标率是百分率的一种,它的含义即“达标人数是测试总人数的百分之几”,与“求一个数是另一个数的几分之几”问题的计算方法相同,因此用“达标人数÷测试总人数”就行;因为百分率是百分数,计算结果应是百分数形式,所以完整的计算方法应是“达标率=达标人数 除以 测试总人数 ×100%”。

谈话:《国家学生体质健康标准》要求小学生体质健康达标率不得低于60%,通过计算、比较,说明我们班学生的体质是达到健康标准的,这也是百分率的价值所在。

2、教学例2——掌握百分率计算方法,认识百分率的价值

(1)出示例2:科学课上,五(2)班同学做的种子发芽实验结果如下:

种子名称 实验种子总数 发芽数 发芽率

绿豆 80 78

花生 50 46

大蒜 20 19

(2)学生读题,弄清已知条件和问题,讨论发芽率的含义,尝试计算各种种子的发芽率。 (3)指名学生交流发芽率的含义及计算方法,板演算式,集体订正。

(4)比较,认识发芽率在生产实践中的价值。

通过计算我们发现哪种种子的发芽率要高一些?哪种要低一些呢?讲解:发芽率对于农民种田是十分重要的,他们需要根据发芽率的高低,决定种子品种和播种面积。

3、小组合作探究,寻找生活中的百分率,总结百分率计算公式。

(1)谈话,明确合作学习要求:在实际生活中,像命中率、达标率、发芽率等这样的百分率还有很多,请小组四位同学在一起开动脑筋、积极协作,寻找生活中的百分率,写出它的计算方法,比一比哪个小组找得最多。

(2)小组合作,寻找生活中的百分率,探究其含义及其计算方法,写出计算公式,教师巡视了解小组合作情况及结果。

(3)小组代表汇报本组收集的百分率,阐明其含义,在投影仪上展示计算方法,师生共同订正。

(4)罗列不同百分率的计算方法,引导学生发现共同点,总结百分率的计算公式: ?率= 量 ? 除以总数量 ×100%

(5)举实例,加深对百分率计算公式的认识,掌握百分率计算方法。

4、某县种子推广站,用300粒玉米种子作发芽试验,结果发芽的种子有288粒。求发芽率。

5、探讨、交流:生活中的百分率哪些可能大于100%?哪些只会等于或小于100%? 三、巩固练习

1、填一填

①稻谷的出米率是85%,是指( )

的千克数占( )的千克数的百

分之八十五。

②甲数是乙数的 4/5 ,乙数是甲数的

( )%。

③20÷( )= 4/8 =( )︰24=( )%

2、选一选:

种一批树,活了100棵,死了1棵,求成活率的正确算式是( )。

一根钢管截成2段,第一段长 米,第二段占全长的60%,这两段钢管比较( )。 布置作业

1、小组合作,整理生活中常见的百分率的计算方法,写在数学书第86页上。

2、完成练习二十第2、3、4题。

四、课堂小结

今天你有什么收获?生谈收获。

九年级上册数学的教案 篇8

1.记叙文阅读

(1)阅读课内记叙文,课外一般文艺读物,能整体感知文章内容和记叙的特点,分析记叙的要素、了解人称、记叙的顺序。

(2)阅读散文能理解其深刻含义,体会作品思想感情;把握文章的线索,理解文章选材组材特点;体会文章中优美精辟的语句。

(3)能运用记叙文的知识划分文章段落、层次、概括段意层次意,明确详写、略写与表达中心的关系,根据各部分之间的内在联系归纳中心意思。

(4)能在整体感知文章内容的基础上找出重点段落、关键的词语和句子,并加以分析体会。

(5)能分辨记叙、说明、议论、描写、抒情几种不同的表达方式,并分析其表达作用。

2.说明文阅读

(1)了解说明文的主要表达方式是说明,能分辨文中说明与叙述、描写、抒情、议论等表达其它表达方式,并领会它们各自在说明文中的作用。

(2)了解说明文的分类,能依据说明对象将说明文分为事物说明文和事理说明文两大类。

(3)理解说明的内容,能正确判断说明的对象及其特征或本质,准确地概括中心意思。

(4)能根据不同的说明对象及其特征或本质理清说明的顺序,主要掌握空间顺序、时间顺序和逻辑顺序(从现象到本质、从特点到用途、从原因到结果、从整体到局部、从主要到次要、从概括到具体等)三种,并能领会说明顺序的综合运用。

(5)了解说明文总分、并列、层进等结构层次,并能结合文章或段落进行具体分析。

(6)了解说明的方法,主要了解下定义、分类别、举例子、作比较、打比方、列数字、;画图表、引资料等说明方法,能从文章中找出这些方法并简要说明它们的作用。

3.议论文阅读

(1)了解记叙和议论的区别,能分辨文中记叙性的语句和议论性的语句;能分辨以记叙为主和以议论为主的段落;进一步理解记叙是议论的基础,有的段落则是议论引出记叙。

(2)掌握论点知识,能从文中找出或概括论点;理解中心论点与分论点之间的关系。

(3)会分辨事实论据和道理论据,并了解它们在阐明观点方面的作用。

(4)理解例证、引证、对比论证、比喻论证等论证方法及其在阐明观点上的作用。

(5)了解议论文的结构:引论、本论和结论以及提出问题、分析问题、解决问题。

(6)领会议论文语言的严密性和感情 色彩。

(7)了解立论、驳论两种论证方式,了解常见的反驳方法。

4.文言文阅读

(1)读准字音,读好停顿。

(2)按照教材要求背诵重点篇章。

(3)了解课文的基本内容。

(4)能够回答课后练习中有关课文内容方面的问题。

(5)了解文章的主要写作方法。

九年级数学上册教案 篇9

一、指导思想:

九年级数学以党和国家的教育教学此文转自方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学都能够在此数学学习过程中获得最适合自已发展的广泛空间。通过九年级数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维级力和空间想象能力,能够运用所学知识解决简朴的实际问题,培养学生手数学创新意识,良好个性品质以及初步的唯物主义观。

二、教学内容

本学期所教九年级数学包括第一章《一元二次方程》,第二章《定义命题公理与证实》,第三章《相似形》,第四章《解直角三角形》。第五章《概率的计算》。

三、教学目标

知识技能目标:会解一元二次方程:理解定义命题公理并学会运用:掌握相似形的相关知识及运用;会解直解三角形,掌握概率的初步计算方法。

过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

四、教学措拖

1、教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。

2、教学速度以适应大多学生为主,尽量兼顾后进生,注意整体推进。

3、新课教学中涉及到旧知识时,对其作相应的复习回顾。

4、复习阶段多让学生动脑、动手、通过各种习题、综合试题和模仿试题的训练,使学生逐步认识各知识点,并能纯熟运用。

五、教学进度

全学期约为22周,安排如下:

09.1~09.30:一元二次方程

10.7~10.30:定义命题公理与证实

11.01~11.26:相似形

11.27~12.27:解直角三角形

12.28~20__.1.14:概率的计算

01.15~01.30:整理复习

数学九年级上教案 篇10

活动目标

1、尝试实验,获得有关容量守恒的经验。

2、乐意动手动脑探究水的变化,了解它的主要特性。

活动准备

1、趣味练习:容量比较)

2、标有刻度的瓶子,水,记录纸,笔。

活动过程

一、观察提问

1.出示趣味练习:容量比较

教师:小朋友看一看这六瓶水是一样多的吗?你是怎么知道的?

小结:现在我们想办法做一下实验,比较一下水的多少吧。

二、实验操作

1、教师:用什么办法验证呢?怎么操作?

要求:实验用的两瓶水不能混在一起,实验时动作慢一点,避免将水洒出影响实验结果。

2、记录实验结果

(1)高矮不同的两只瓶子

方法是通过比较水位 的高低,我们可以看出瓶子的水是一样的。

原来瓶子的高矮是不影响水的多少的。

(2)粗细不同的两只瓶子小

选择两个相同的空瓶,把装在大小不同的瓶内的饮料倒入其中,比较出饮料一样多。

方法,任选一个瓶子,将一瓶饮料倒入,用笔画或粘纸条的方法做标记,

把饮料倒出后再将另一瓶饮料倒入该瓶,看饮料位置与原来留下的标记是否一致,

比较出饮料一样多原来瓶子的粗细是不影响水的多少的。

(3)一只含内容物的的瓶子内容物为石子

方法是取出瓶中石子,比较水位的高低。

内容物为海绵小结:方法是将海绵中的水挤回瓶中,比较水位的高低。

原来瓶子里面是否有物体是不影响水的多少的。

3、总结:瓶子的高矮、粗细、内含物是不影响水的多少的,这种现象就叫做容量守恒。

三、活动延伸

想一想,如果把两块一样重的橡皮泥塞进不同形状的瓶子里,橡皮泥会变重吗?

回去试试看吧!