首页 > 教学教案 > 初中教案 > 初一教案 > 完全平方公式优秀5篇正文

《完全平方公式优秀5篇》

时间:

课件是教师课堂教学过程中的重要依据,是教学活动正常开展的重要保障。课件,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,由于学科和教材的性质﹑教学目的和课的类型不同,课件不必有固定的形式。这里是的小编为您带来的完全平方公式优秀5篇,如果能帮助到您,小编的一切努力都是值得的。

《完全平方公式》教案 篇1

一、教材分析

完全平方公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,对以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算都有举足轻重的作用。

本节课是继乘法公式的内容的一种升华,起着承上启下的作用。在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。

二、学情分析

多数学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。所以教学中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。

三、教学目标

知识与技能

利用添括号法则灵活应用乘法公式。

过程与方法

利用去括号法则得到添括号法则,培养学生的逆向思维能力。

情感态度与价值观

鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。

四、教学重点难点

教学重点

理解添括号法则,进一步熟悉乘法公式的合理利用。

教学难点

在多项式与多项式的乘法中适当添括号达到应用公式的目的。

五、教学方法

思考分析、归纳总结、练习、应用拓展等环节。

六、教学过程设计

师生活动

设计意图

一.提出问题,创设情境

请同学们完成下列运算并回忆去括号法则.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:

去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.

也就是说,遇“加”不变,遇“减”都变.

二、探究新知

把上述四个等式的左右两边反过来,又会得到什么结果呢?

(1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)

(3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)

左边没括号,右边有括号,也就是添了括号,同学们可不可以总结出添括号法则来呢?

(学生分组讨论,最后总结)

添括号法则是:

添括号时,如果括号前面是正号,括到括号里的。各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.

也是:遇“加”不变,遇“减”都变.

请同学们利用添括号法则完成下列练习:

1.在等号右边的括号内填上适当的项:

(1)a+b-c=a+( ) (2)a-b+c=a-( )

(3)a-b-c=a-( ) (4)a+b+c=a-( )

判断下列运算是否正确.

(1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确.

三、新知运用

有些整式相乘需要先作适当的变形,然后再用公式,这就需要同学们理解乘法公式的结构特征和真正内涵.请同学们分组讨论,完成下列计算.

例:运用乘法公式计算

(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

四.随堂练习:

1.课本P111练习

2.《学案》101页——巩固训练

五、课堂小结:

通过本节课的学习,你有何收获和体会?

我们学会了去括号法则和添括号法则,利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算.

我体会到了转化思想的重要作用,学数学其实是不断地利用转化得到新知识,比如由繁到简的转化,由难到易的转化,由已知解决未知的转化等等.

六、检测作业

习题14.2: 必做题: 3 、4 、5题

选做题:7题

知识梳理,教学导入,激发学生的学习热情

交流合作,探究新知,以问题驱动,层层深入。

归纳总结,提升课堂效果。

作业检测,检测目标的达成情况。

数学《完全平方公式》教案 篇2

课题教案:

完全平方公式

学科:

数学

年级:

七年级

1内容本节课的主题:

通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

1.1以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。使学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

1.2用标准的数学语言得出结论,使学生感受科学的严谨,启迪学生的数学思维。

2教学目标

2.1知识目标:会推导完全平方公式,并能运用公式进行简单的计算;了解(a+b)2=a2+2ab+b2的几何背景。

2.2技能目标:经历由一般的多项式乘法向乘法公式过渡的探究过程,进一步培养学生归纳总结的能力,并给公式的应用打下坚实的基础。

2.3情感与态度目标:通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。

3教学重点

完全平方公式的准确应用。

4教学难点

掌握公式中字母表达式的意义及灵活运用公式进行计算。

5教育理念和教学方式

5.1教学是师生交往、积极互动、共同发展的过程。教师是学生学习的组织者、促进者、合作者:本节的教学过程,要为学生的动手实践,自主探索与合作交流提供机会,搭建平台;尊重和自己意见不一致的学生,赞赏每一位学生的结论和对自己的超越,尊重学生的个人感受和独特见解;帮助学生发现他们所学东西的个人意义和社会价值,通过恰当的教学方式引导学生学会自我调适,自我选择。

学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

5.2采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。充分利用动手实践的机会,尽可能增加教学过程的趣味性,强调学生的动手操作和主动参与,通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究。

6具体教学过程设计如下:

6.1提出问题:[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会计算下列各题吗?

(x+3)2=,(x-3)2=,

这些式子的左边和右边有什么规律?再做几个试一试:

(2m+3n)2=,(2m-3n)2=

6.2分析问题

6.2.1[学生回答]分组交流、讨论 多项式的结构特点

(1)原式的特点。两数和的平方。

(2)结果的项数特点。等于它们平方的和,加上它们乘积的两倍

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

6.2.2[学生回答]总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

6.2.3、[学生回答]完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

6.3运用公式,解决问题

6.3.1口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=, (m-n)2=,

(-m+n)2=, (-m-n)2=,

6.3.2小试牛刀

①(x+y)2=;②(-y-x)2=;

③(2x+3)2=;④(3a-2)2=;

6.4学生小结:你认为完全平方公式在应用过程中,需要注意那些问题?

(1)公式右边共有3项。

(2)两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

6.5[作业]P34随堂练习P36习题

完全平方公式教学设计 篇3

一、教材分析:

(一)教材的地位与作用

本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:

(1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。

(2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。

(3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式。

(二)教学目标的确定

在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:

1、知识目标:

理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

2、能力目标:

渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。

3、情感目标:

培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。

(三)教学重点与难点

完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:

本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。

二、教学方法与手段

(一)教学方法:

针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

采用小组讨论,大组竞赛等多种形式激发学习兴趣。

(二)教学手段:

利用投影仪辅助教学,突破教学难点,公式的推导变成生动、形象、直观,提高教学效率。

(三)学法指导:

在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

三、教材处理

根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的方法进行,再通过分层次练习,加以巩固。

四、教学程序

一、创设情境,引出课题

如图,有一个边长为a米的正方形广场,则这个广场的面积是多少?

a

若在这个广场的相邻两边铺一条宽为10米的道路,则面积是多少?

a 10

引导学生利用图形分割求面积。

另一方面:正方形

10 10a 102面积为(a+10)2,所以:

(a+10)2=a2+20a+102

a a2 10a

a 10

b ab b2把10替换为b,

(a+b)2=a2+2ab+b2

a a2 ab提出课题

a b

通过较为简单的几何图形面积计算和较熟悉的整式乖法计算。引入本节学习内容(a+b)·(a+b)

(根据初一学生年龄特点,采用图形变化来激发学生学习兴趣)

问题是知识、能力的生长点,通过富有实际意义的问题能激活学生原有认知,促使学生主动地进行探索和思考。

对公式(a+b)2=a2+2ab+b2的形式进行初步认识,接触。

二、交流对话,探求新知

1、推导两数和的完全平方公式

计算(a+b)2

解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

2、理解公式特征

①算式:两数和的平方

②积:两个数的。平方和加上这两个数积的2倍

3、语言叙述

(a+b)2=a2+2ab+b2用语言如何叙述

4、公式(a—b)2=a2—2ab+b2教学

①利用多项式乘法(a—b)2=(a—b)(a—b)

②利用换元思想(a—b)2=[a+(—b)]2

③利用图形

b

a

(a—b)b

a

5、学生总结、归纳:

(a+b)2=a2+2ab+b2

(a—b)2=a2—2ab+b2

这两个公式叫做完全平方公式,两数和(或差)的平方,等于这两数的平方和,加上(或减去)这两数积的2倍。

6、公式中的字母含义的理解。(学生回答)

(x+2y)2是哪两个数的和的平方?

(x+2y)2=()2+2()()+()2

(2x—5y)2是哪两个数的差的平方?

(2x+5y)2=()2+2()()+()2

变式(2x—5y)2可以看成是哪两个数的和的平方?

利用多项式乘法推导公式,使学生了解公式的来源以及理解乘法公式的本质。

组织学生小组讨论,使学生明确公式特征,加深对公式表象的理解。

由学生对公式

(a+b)2=a2+2ab+b2进行口头语言叙述。

(1)说明:教师提供三种模式,由学生选择一种去解决。培养学生学习的主动性,开阔学生的思路。

(2)同时对渗透数形结合思想、换元思想,也是分散、分步突破本节的难点的第一个层次;

(3)体会辩证统一的唯物主义观点;

(4)正确引导学生学习时知识的正迁移。

使学生学会对公式的正确表述,有利于学生正确用于计算之中,此时也可以让学生对两个公式特点进行讨论归纳,适当总结一定的口诀:“头平方,尾平方,两倍的乘积中间放。”加深学生对公式中的字母含义的理解,明确字母意义的广泛性。

三、整理新知形成结构

1、完全平方公式并分析公式左右的特征。

2、换元的基本想法

四、应用新知,体验成功

1、例1教学:用完全平方公式计算

(1)(a+3)2

(2)(y—)2

(3)(—2x+t)2

(4)(—3x—4y)2

学生直接运用公式计算,教师板演,讲评时边口述理由,针对第(4)题(—3x—4y)2可以看成是—3x与4y差的平方,也可以看成—3x与—4y和的平方。

提出以下问题:

(1)可否看成两数和的平方,运用两数和的平方公式来计算?

(2)可否看成两数差的平方,运用两数差的平方公式来计算?

(3)能不能进行符号转化?如(—3x—4y)2=(3x+4y)2

2、公式巩固

(1)同桌同学互相编一道用完全平方公式计算题目,然后解答。

(2)下列各式的计算,错在哪里?应怎样改正?

①(a+b)2=a2+b2 ②(a—b)2=a2—b2

③(a—2b)2=a2+2ab+2b2

3、练习:运用完全平方公式计算:(学生板演)

①(a+5)2

②(3+x)2

③(y—2)2

④(7—y)2

⑤(2x+3y)2

⑥(—2x—3y)2

⑦(3—)2

⑧(— —)2

4、例2,运用完全平方公式计算:

(1)1012

(2)982

5、练习:运用完全平方公式计算

(1)912

(2)7982

(3)(10)2

6、讨论:

(1—2x)(—1—2x),(x—2y)(—2y+1)如何计算

五、公式拓展,鼓励探究

1、a2+b2=(a+b)2—______ a2+b2+ _______=(a+b)2

a2+b2+ ________ =(a—b)2

2、(a+b)2—(a—b)2=______

3、(a+b+c)2=________

4、提出思考题:(a+b)3=?(a+b)4=?

5、已知求的值。

6、已知,求x和y的值。

(1)遵循及时巩固原则。

(2)针对初一学生注意力不能持久的特点。

(3)形成知识网络,有利于学生进一步学习公式的运用:

(1)直接运用公式进行计算。

(2)进一步帮助学生掌握换元法。

(3)进行符号转化的变换,加深学生对公式理解的深度,也为进一步学习其它知识打好基础。

讲练结合:

(1)合作学习,四人小组讨论(教师逐步引导到运用完全平方公式计算)学生讲自己解题的想法和步骤,培养语言表达能力。

(2)体会公式实际运用作用,增加学习兴趣,进一步辨析完全平方公式与平方差公式的区别。

提出一个问题,引导学生用学习研究完全平方公式的方法去研究公式的拓展变形问题。如:三项式的平方,两项式的立方、四次方等,培养学生的严谨的治学态度和钻研精神。

六、小结提高,知识升华

1、两个公式(a+b)2=a2+2ab+b2

(a—b)2=a2—2ab+b2

2、两种推导方法:多项式乘法导出;图形面积导出

3、换元法与转化

七、作业布置,分层落实

1、阅读教材6.17内容

2、见省编作业本6.17

3、对(a+b)2,(a+b)3 ……的展开式从项数、系数方面进行研究

由学生自己小结本节所学知识、方法等。教师根据学生回答情况作出补充。

(1)作业1主要以培养学习良好的学习习惯为目的。

(2)结合学生实际情况,贯彻面向全体学生,因材施教原则。

作业2要求全体学都能完成。作业3为选做题,部分学有余力的学生可选做。在减轻学生的课业负担同时,注重人本思想,以学生的能力发展为重。也能满足不同层次学生的不同要求。

数学《完全平方公式》教案 篇4

一、内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式

展开教学。

3、教学评价方式:

(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主

动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2)通过判断和举例,给学生更多机会,在自然放松的状态下,

揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

教学效果。

五、教学媒体:多媒体六、教学和活动过程:

教学过程设计如下:

〈一〉、提出问题

[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题

1、[学生回答]分组交流、讨论

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答]总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答]完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、运用公式,解决问题

1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判断:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、小试牛刀

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题?

(1)公式右边共有3项。

(2)两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

〈六〉、学生自我评价

[小结]通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业]P34随堂练习P36习题

《完全平方公式与平方差公式》教学设计 篇5

教学目标

理解两个完全平方公式的结构,灵活运用完全平方公式进行运算。

在运用完全平方公式的过程中,进一步发展学生的符号演算的能力,提高运算能力。

培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。

重点难点

重点

完全平方公式的比较和运用

难点

完全平方公式的结构特点和灵活运用。

教学过程

一、复习导入

1、 说出完全平方公式的内容及作用。

2、 计算 ,除了直接用两数差的完全平方公式外,还有别的方法吗?

学生思考后回答:由于两数差可以转化成两数和,所以还可以用两数和的完全平方公式计算,把“ ”看成加数,按照两数和的完全平方公式计算,结果是一样的。

教师归纳:当我们对差与和加以区分时,两个公式是有区别的,区别是其结果的中间项一个是“减”一个是“加”,注意到区别有助于计算的准确;另一方面,当我们对差与和不加区分,全部理解成“加项”时,那么两个公式从结构上来看就是一致的了,其结构都是“两项和的平方,等于它们的平方和,加上它们的积的两倍。”注意到它们的统一性,有于我们更深刻地理解公式特点,提高运算的灵活性。

我们学习运算,除了要重视结果,还要重视过程,平时注意训练运算方法的多样性,可以加深对算理的理解和运用,提高运算过程的合理性和灵活性,从而真正的提高运算能力。

二、新课讲解

温故知新

与 , 与 相等吗?为什么?

学生讨论交流,鼓励学生从不同的角度进行说理,共同归纳总结出两条判断的思路:

1、对原式进行运算,利用运算的结果来判断;

2、不对原式进行运算,只做适当变形后利用整体的方法来判断。

思考:与 , 与 相等吗?为什么?

利用整体的方法判断,把 看成一个数,则 是它的相反数,相反数的奇次方是相反的,所以它们不相等。

总结归纳得到: ;

三、典例剖析

例1运用完全平方公式计算:

(1) ; (2)

鼓励学生用多种方法计算,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,同时还要引导学生评价哪种算法最简洁。

例2计算:

(1) ; (2) 。

例3 计算:

(1) ; (2)

训练学生熟练地、灵活地运用完全平方公式进行运算,进一步渗透整体和转化的思想方法。

四、课堂练习

1、运用完全平方公式计算:

(1) ; (2) ;

(3) ; (4)

2、计算:

(1) ;(2) 。

3. 计算:

(1) ; (2)

学生解答,教师巡视,注意学生的计算过程是否合理,组织学生对错误进行分析和点评。

五、小结

师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

P50第2(3)、(4),3题