《初中数学设计教案优秀8篇》
作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?的小编精心为您带来了初中数学设计教案优秀8篇,如果能帮助到您,小编的一切努力都是值得的。
初中数学教案 篇1
教学目标:
1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题。
2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律。
教学重点:
使学生准确、熟炼、灵活地运用切线的判定方法及其性质。教学难点:学生对题目不能准确地进行论证。证题中常会出现不知如何入手,不知往哪个方向证的情形。
教学过程:
一、新课引入:
我们已经系统地学习了切线的判定方法和切线的性质,现在我们来利用这些知识证明有关几何问题。
二、新课讲解:
实际上在几何证明题中,我们更多地将切线的判定定理和性质定理应用在具体的问题中,而一道几何题的分析过程,是证题中的最关键步骤。p.109例3如图7-58,已知:ab是⊙o的直径,bc是⊙o的切线,切点为b,oc平行于弦ad.求证:dc是⊙o的切线。
分析:欲证cd是⊙o的切线,d是⊙o的弦ad的一个端点当然在⊙o上,属于公共点已给定,而证直线是圆的切线的情形。所以辅助线应该是连结oc.只要证od⊥cd即可。亦就是证∠odc=90°,所以只要证∠odc=∠obc即可,观察图形,两个角分别位于△odc和△obc中,如果两个三角形相似或全等都可以产生对应角相等的结果。而图形中已存在明显的条件od=ob,oc=oc,只要证∠3=∠4,便可造成两个三角形全等。
∠3如何等于∠4呢?题中还有一个已知条件ad∥oc,平行的位置关系,可以造成角的相等关系,从而导致∠3=∠4.命题得证。证明:连结od.教师向学生解释书上的证题格式属于推出法和因为所以法的联用,以后证题中同学可以借鉴。p.110例4如图7-59,在以o为圆心的两个同心圆中,大圆的弦ab和cd相等,且ab与小圆相切于点e求证:cd与小圆相切。
分析:欲证cd与小⊙o相切,但读题后发现直线cd与小⊙o并未已知公共点。这个时候我们必须从圆心o向cd作垂线,设垂足为f.此时f点在直线cd上,如果我们能证得of等于小⊙o的半径,则说明点f必在小⊙o上,即可根据切线的判定定理认定cd与小⊙o相切。题目中已告诉我们ab切小⊙o于e,连结oe,便得到小⊙o的一条半径,再根据大⊙o中弦相等则弦心距也相等,则可得到of=oe.证明:连结oe,过o作of⊥cd,重足为f.
请同学们注意本题中证一条直线是圆的切线时,这种证明途径是由直线与圆的公共点来给定所决定的。
练习一
p.111,1.已知:oc平分∠aob,d是oc上任意一点,⊙d与oa相切于点e.求证:ob与⊙d相切。分析:审题后发现欲证的ob与⊙d相切,属于ob与⊙d无公共点的情况。这时应从圆心d向⊙b作垂线,垂足为f,然后证垂线段df等于⊙b的一条半径,而题目中已给oa与⊙d切于点e,只要连结de.再根据角平分线的性质,问题便得到解决。证明:连结de,作df⊥ob,重足为f.p.111中2.已知如图7-61,△abc为等腰三角形,o是底边bc的中点,⊙o与腰ab相切于点d.求证:ac与⊙o相切。
分析:欲证ac与⊙o相切,同第1题一样,同属于直线与圆的公共点未给定情况。辅助线的方法同第1题,证法类同。只不过要针对本题特点还要连结oa.从等腰三角形的”三线合一”的性质出发,证得oa平分∠bac,然后再根据角平分线的性质,使问题得到证明。证明:连结od、oa,作oe⊥ac,垂足为e.同学们想一想,在证明oe=od时,还可以怎样证?
(答案)可通过“角、角、边”证rt△odb≌rt△oec.
三、新课讲解
:为培养学生阅读教材的习惯让学生阅读109页到110页。从中总结出本课的主要内容:
1.在证题中熟练应用切线的判定方法和切线的性质。
2.在证明一条直线是圆的切线时,只能遇到两种情形之一,针对不同的情形,选择恰当的证明途径,务必使同学们真正掌握。
(1)公共点已给定。做法是“连结”半径,让半径“垂直”于直线。
(2)公共点未给定。做法是从圆心向直线“作垂线”,证“垂线段等于半径”。
四、布置作业
教材p.116中8、9.2.教材p.117
初中数学教案 篇2
①结合你对一元一次方程中的一次的理解,说一说你对一次函数中的“一次”的理解. ②k可以是怎样的数?
③你怎样认识一次函数和正比例函数的关系?
一个常数b的和即 Y=kx+b 定义:一般地,形
如
Y=kx+b( k,b 是常数,k≠0 )的函数,叫做一次函数, 当
b=0时,
Y=kx+b即Y=kx,所以说正比例函数是一种特殊的一次函数。
例1、下列函数中,Y是X的一次函数的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X
学生独立
A①②③B①③④C①②④D①②③④
例2、写出下列各题中x与y之间的关系式,并判
解释与应用
断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间(时)之间的关系式;②圆的面积y(厘米2)与他的半径x(厘米)之间的关系:③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度y(厘米)之间的关系式
初中数学教学设计 篇3
新学期已到来,我们又要投入到紧张、繁忙而有序地教育教学工作中,使自己今后的教学工作中能有效地、有序地贯彻新的教育精神,围绕我校新学期的工作计划要求制定初中一年级数学教学设计方案:
一、教材分析:
本学期是本年级学生初中学习阶段的第二学期、新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、现行教材、教学大纲要求学生从身边的实际问题出发,乘坐观察、思考、探究、讨论、归纳之舟,去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质、
二、教学目标:
本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力、在期末考试中力争生均分87分左右,及格率75%以上,并将低分率控制到10%以下,综合成绩县前五。
三、教学措施:
1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质、
2、把握学生思想动态,及时与学生沟通,搞好师生关系、
3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩、
4、改进教学方法,用挂图,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会、
5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘、
6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力、
7、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长、特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:(1)课前预习习惯;(2)积极思考,主动发言习惯;(3)自主作业习惯;(4)课后复习习惯。
初中数学设计教案 篇4
一、教学目标
(一)。及时巩固所学知识;
(二)。培养学生观察能力,提高他们分析问题和解决问题的能力;
(三)。使学生初步养成正确思考问题的良好习惯。
二、教学重点和难点
一元一次方程解简单的应用题的方法和步骤。
三、教学过程
主要为习题处理,由浅入深,使学生把所学知识系统化。
主要由学生完成,老师引导。
习题3。1中,1。2。3都是基础知识题,让学生到黑板上做几道有代表意义的题,然后老师对错的`给与纠正,让学生对基础知识题的正确把握。
主要针对学生比较难懂的应用题来讲解;
习题5,把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?
分析:设获得一等奖的学生有X人,由已知条件得:
X×200+(22—X)×50=1400
本题要让学生理解这种设未知数建立方程的思想,设获得一等奖的学生有X人,那么二等奖的人数就是22—X。
习题6,种一批树苗,如果每人种10棵,则剩6棵树苗未种,如果每人种12棵,则缺少6棵苗,有多少人种数?
分析:两种方法种树苗,等式就是总树苗相等,设有X人种树,
那么:10X+6=12X—6
所以找到等式就是列出方程的重要一步。
习题7,一辆汽车已经行驶了12000千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?
分析:由已经行驶了12000千米,计划每月再行驶800千米,最后达到20800千米,我们设X个月后达到目标,列出等式
12000+800X=20800
总之,找出他们之间存在的相等关系就是解决问题的关键。
通过系统的学习,让学生的综合运用能力提高,对拓广探索中的题目老师要细心讲解,因为学生对这些题的理解有困难。
四、课堂总结
通过大量的练习,及时巩固所学知识,使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题。
五、作业布置
习题3。1第7、8题。
初中数学设计教案 篇5
一、教学目标
(一)知识教学点
1.使学生能利用公式解决简单的实际问题。
2.使学生理解公式与代数式的关系。
(二)能力训练点
1.利用数学公式解决实际问题的能力。
2.利用已知的公式推导新公式的能力。
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践。
(四)()美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。
二、学法引导
1.数学方法:引导发现法,以复习提问小学里学过的'公式为基础、突破难点。
2.学生学法:观察→分析→推导→计算
三、重点、难点、疑点及解决办法
1.重点:利用旧公式推导出新的图形的计算公式。
2.难点:同重点。
3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差。
四、课时安排
一课时。
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。
初中数学设计教案 篇6
一、学生知识状况分析
八年级学生正处于形象思维过渡的阶段,对观察、猜想、探索性的问题充满好奇。本节课是第四章第九节图形的放大与缩小的第二课时,在上一课时学习了位似图形及相关概念后,学生动手将一些简单图形进行了放大或缩小,已获 得一些相关的知识经验和体验,对位似图形及其性质有一定了解,在此基础上,本节课通过将一个图形放大或缩小,让学生进一步掌握将图形放大或缩小的具体方法。同时,在以往的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的经验,具备了归纳知识的能力。
二、教学任务分析
基于学生已经学过相似、位似等有关知识,并能将某一简单图形按一定比例放大或缩小。本节课以将一个图形(箭头)按1:2的比例放大为例,继续学习图形的放大与缩小的知识,通过具有挑战性的内容,促使学生进一步熟练掌握利用位似将一个图形 按比例放大或缩小,近而能初步归纳出位似图形放大或缩小的规律,形成有关技能,发展思维能力。本节课将观察、动手操作等实践活动贯穿于教学活动的始终。同时,有意识地培养学生积极的情感和态 度。为此,本节课的教学目标是:
1、能熟练准确地利用图形的位似将一个图形放大或缩小;
2、了解常用的几种图形的放大或缩小的数学依据;
3、有意识地培养学生学习数学的积极情感,激发学生对图形学习的好奇心,形成多角度、多方法想问题的学习习惯;
4、进一步培养学生动手操作的良好习惯。
教学重、难点:
1、重点:利用位似将一个图形放大或缩小;
2、难点:比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律
教学设备:利用计算机制作课件,辅助教学。
三、教学过程分析
本节课设计了七个教学环节:第一环节:复习引入;第二环节:例题讲授(课件展示);第三环 节:议 一议;第四环节:想一想;第五环节:巩固练习;第六环节:课堂小结;第七环节:布置作业。
第一 环节:复习引入
活动内容:
提问:1、什么叫做位似图形,它具有什么性质?
2、如何将画在纸上的一个图片放大,使放大前后对应线段的比为1:2?你有哪些方法?与同伴交流。
让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正,补充。
教师说明:除利用前面已经用过的“橡皮筋”,方格纸等方法外,在计算机上,借助一些软件也可以很方便地将一个图形放缩,如有条件,可以试试。
下面我们继续学习如何将纸上的一个图形放大。(从而引入新课)
活动目的:
通过复习,回顾位似图形的相关知识,为新课的进行做好铺垫。
注意事项:
复习时间不宜过长,对于“橡皮筋”法和方格纸法只需简单描述即可,此处不必让学生动手操作。
第二环节:例题讲授
活动内容:
课件展示,让学生观察图形(如右图),要求作出一个新图形,使新图形与原图形对应 线段的比为2 :1。
1、让学生先分组讨论,找出方法,然后说明方法的可行性。(橡皮筋法、方格纸放大 法)教师对于学生找到的方法进行简单的评述,并引入本课的主题:利用位似图形放大(或缩小)图形。注意,此过程对于学过方法的回顾,不必花太多的时间,学生找出方法即可,因为这两种方法不是本课的重点。
2、教师讲解作图步骤及方 法(课件展示)。
3、待课件展示后,教师引导学生小结,利用位似图形放大(或缩小)的作图步骤。
简记方法:(1)选点;(2)作射线;(3)定对应点;(4)连线
活动目的:
用课件展示作图的步骤及过程,不仅能吸引学生的注意力,同时,让学生学会听课,观察,通过仔细观察,掌握利用位似图形放大(或缩小)图形的方法,并能对所学的作图方法进行初步归纳(用自己的语言描述)。
注意事项:
用课件展示作图的步骤及过程时,可重复操作,让学生看清楚。在重复操作之前,教师可进行必要的讲解, 以便在第二次课件展示时,学生能加深理解和基本掌握,并进一步归纳出作图的步骤(学生用自己的语言描述即可)。
第三环节:议一议
活动内容:
1、问:对于上面的例题,你还有其他方法吗?[来源:ZXXK]
提示:如果依次在射线PA、PB、PC、PD、PE、PF、PG上取点A、B、C、D、E、F、G呢?
2、让学生动手按要求在草稿本上作图,此过程教师巡视学生的操作,并适时给予必要的指导。
3、将较好的学生作图进行展示,并由学生说明作图的步骤。
活动目的:
让学生在活动中能够举一反三,触类旁通、善于发现、勤于探究,形成自主学习的良好学习习惯。
注意事项:
这一环节一定要让学生亲自动手,教师要特别关注学生的动手操作过程,对于在作图中出现的问题要及时给予解决。
第四环节:想一想
活动内容:
课件展示:下面的说法对吗?为什么?
(1)分别在△ABC的边AB、AC上取点D、E,使DE∥BC,那么△ADE是△ABC缩小后的图形。
(2)分别在△ABC的边AB、AC延长线上取点D、E,使DE∥BC,那么△ADE是△ABC放大后的图形。
(3)分别在△ABC的边AB、AC反向延长线上取点D、E,使DE∥BC,那么△ADE是△ABC放大后的图形。
1、让学生在练习本上根据题意,画出草图,进行判断,同时说明理由。
2、教师在学生回答各小题的同时,利用课件同步展示,进行集体讲解、交流。
活动目的:
通过具体的题目,继续引导学生关注线段的平行与三角形相似的位置关系;同时,通过练习,让学生学会分析问题、解决问题,同时巩固加深了学生 对本节知识的理解和掌握。
注意事项:
教学过程中,要给学生充足的时间进行思考,得出结论后,再进行集体交流和课件展示。
第五环节:巩固练习
活动内容:
三角形的顶点坐标分别是A(2,2),B(4,2),C(6,4),试将△ABC缩小,使缩小后的△DEF与△ABC对应边的比为1:2。
过程:先让学生思考,完成练习后,再用课件展示图例,讲解方法。
活动目的:
对本节知识进行巩固练习,以达到熟练掌握的目的。
注意事项:
教师进行巡视,关注学生的做题过程和效果,及时发现学生解题过程中存在的问题,并给予必要的帮助。对于普遍性的问题,应做集体讲解。如果学生使用别的方法,只要合理就应予以肯定。
第六环节:课堂小结
活动内容:
(课件展示)问题:1、位似图形、位似中心、位似比的定义?
2、位似图形的性质。
3、位似图形的作法。
活动目的:
通过复习,让学生学会把知识系统化,加深对知识的`理解和掌握,同时,培养学生有条理的进行思考。
注意事项:
小结的三个问题,应由学生思考后作出回答,相互补充,教师切不可代办。
[来源:]
第七环节:布置作业
活动内容:
1、教材P140页 习题4.13 1、 2
2、试用几何画板将一个图形放大或缩小。
活动目的:
让学生在练习的过程中加深对本课知识的理解和掌握,作业2是为了让学有余力的同学能勇于探索,拓展知识。
四、教学反思
本节课,通过复习,再接着上新课,不仅学习了新的知识,同时,更进一步加深了对已学知识的理解和掌握。
整堂课,采取学生观察、思考、动手作图等方式,真正体现了学生是课堂的主体,而教师的讲解及适时引导、点拨,促使学习过程有效的开展。其中展示学生的优秀作品,培养了学生 的成就感,增强了学生学好数学的信心。“想一想”环节,让学生动手操作,根据自己的理解,作出判断,培养学生主动学习的意识。
通过本节课, 学生掌握了位似图形的画 法,积累了有关数学活动经验,并在这处过程中,通过独立思考,自主探索和合作交流,理解了位似图形的数学内涵,形成有关技能,发展了思维能力。
采用多媒体教学已经成为教师的重要教学手段。运用多媒体教学,通过对感官的刺激获取的信息量,比单一的听老师讲课强得多。利用多媒多调动学生的学习兴趣,使学生主动学习,多媒体恰当的演示,使学生对所学知识产生了好奇心,激起了他们探索知识的欲望,最终达到提高课堂教学质量的目的。
初中数学教案 篇7
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
二、教学目标:
知识与技能:掌握平行线的性质,能应用性质解决相关问题。
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:
重点:平行线的性质
难点:“性质1”的探究过程
四、教学方法:
“引导发现法”与“动像探索法”
五、教具、学具:
教具:多媒体课件
学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
学生活动:
思考回答。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质。
(二)数形结合,探究性质
1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).
问题一:指出图中的同位角,并度量这些角,把结果填入下表:
第一组
第二组
第三组
第四组
同位角
∠1
∠5
角的度数
数量关系
学生活动:画图——度量——填表——猜想
结论:两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?
学生:探究、讨论,最后得出结论:仍然成立。
2.教师用《几何画板》课件验证猜想
3.性质1.两条直线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系?
学生活动:独立探究——小组讨论——成果展示。
教师活动:引导学生说理。
因为a‖b 因为a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
语言叙述:
性质2 两条直线被第三条直线所截,内错角相等。
(两直线平行,内错角相等)
性质3 两条直线被第三条直线所截,同旁内角互补。
(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1.(抢答)
(1)如图,平行线AB、CD被直线AE所截
①若∠1 = 110°,则∠2 = °.理由:.
②若∠1 = 110°,则∠3 = °.理由:.
③若∠1 = 110°,则∠4 = °.理由:.
(2)如图,由AB‖CD,可得( )
(A)∠1=∠2 (B)∠2=∠3
(C)∠1=∠4 (D)∠3=∠4
(3)如图,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
(A) 180°(B)270° (C)360° (D)540°
(4)谁问谁答:如图,直线a‖b,
如:∠1=54°时,∠2= .
学生提问,并找出回答问题的同学。
2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠A=100°,
∠B=115°,求梯形另外两角分别是多少度?
(五)概括存储(小结)
1.平行线的性质1、2、3;
2.用“运动”的观点观察数学问题;
3.用数形结合的方法来解决问题。
(六)作业 第69页 2、4、7.
八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。
②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
初中数学的教学设计 篇8
教育改革的关键在于教师观念的转变,现代教育理论告诉我们:教师的职责现在已经越来越少地传授知识,而是越来越多地鼓励、思考……将越来越成为一位顾问、一位交流意见的参加者、一位帮助发现而不是拿出现成真理的人,必须拿出更多的时间和精力去从事那些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞。这说明了一个道理:教师的地位发生了根本性的变化,不再仅仅是知识的传授者,还要确定“以人为本”的观念,把课堂教学看作自己也是学生人生中的一段激荡的生命经历,鼓励、激发学生去不断探索,把学生的“发现”与“创造”视为最有价值的劳动成果,教师与学生平等地对话,与他们共同感悟思潮的跌宕涌动。我想从三个方面谈谈自己在教学时的一些认识:
一、联系生活、感知数学
“数学课程不仅要考虑数学自身的特点,而且应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程。”这就要求我们遵循学生的思维规律,在实际问题和数学模型之间架起一座桥梁,让学生在不知不觉中走进数学、感知数学。数学来源于生活并服务于生活,主体(学生)在思考问题时,既符合自身的认知规律,又有直觉洞察、直观猜想、合理归纳与活动思维过程,有利于提高自己对数学的认识。
二、身临其境,探索规律
“数学教学活动必须建立在学生的认识发展水平和已有的知识经验上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会。
在教学时教师应根据知识的内在结构和学生的学习规律,提供现象和问题,创设思维情境,引导学生主动参与,进行观察、思考、探索。这样有利于激发学生解决问题的热情,提升学生的学习水平。比如在探究一元二次方程的根与系数的关系时,我们可以按下列步骤来创设情境。
1、求三个一元二次方程的两根之和与两根之积。一般来说学生都是先把方程的根求出来,然后计算,学生可能体会不到什么,此时课堂气氛比较平稳。
2、求一元二次方程的两根之和与两根之积,这时很多学生会感到很繁,怕动手计算,课堂出现沉闷现象。此时教师立即口答出答案,学生就会感觉到很惊奇,为之一振,进而产生疑问:“老师怎么会看出答案?这里会不会有规律?”课堂出现窃窃私语,激活了学生的思维,活跃了课堂气氛。
3、提出问题:你能根据你开始的计算和老师的结论观察出一元二次方程的根与系数之间的关系吗?学生们跃跃欲试,开始投入到观察、思考、探索中去。
4、提出问题:你敢肯定你所猜测到的结论是正确的吗?再一次激发学生的斗志,使他们敢于说理、敢于证明,给予他们充分展示自己才华的机会。
三、由点到面,触类旁通
复习不是简单的知识重复,而是一个再认识、再提高的过程,复习中的最大矛盾是时间短、内容多、要求高。复习既要做到突出重点、抓住典型,又能在高度概括中深刻揭示知识的内在联系,让学生在掌握规律中理解、记忆、熟练、提高。比如在复习一元二次方程根的判别式和根与系数的关系时,可以把一元二次方程根的判别式、根与系数的关系和二次函数的有关知识相联系,根的判别式可以作为判别二次函数的图像与x轴的交点个数的依据:当△>0时,抛物线与x轴有两个不同的交点;当△<0时,抛物线与x轴没有交点;当△=0时,抛物线与x轴只有一个交点即顶点。如果抛物线与x轴有两个不同的交点,用根与系数的关系可以求抛物线与x轴的两个交点之间的距离,可以判别抛物线与x轴交点的位置(交点是在坐标原点的左边还是在坐标原点的右边)等等。这样在复习过程中把知识拓一拓、伸一伸,能激起学生思维的火花、学习的积极性,培养学生运用知识提高分析问题和解决问题的能力。
总之,课堂教学面对的是独立、有个性、有思维的学生,课堂教学设计应适应学生的发展,应随“学情”的变化而变化。课堂教学设计的成效如何,完全取决于教师对教材的理解、对学生情况的了解。只有教师具备“以学生为本”的教学理念,才能一切从学生实际出发、一切为学生考虑,才能真正做到教学服务于学生,实现“不同的人在数学上得到不同的发展”。