《分数乘法教案(优秀16篇)》
作为一名教职工,总不可避免地需要编写教案,借助教案可以有效提升自己的教学能力。教案应该怎么写呢?
分数乘法教案 1
重点:
(1)理解分数乘以整数的意义
(2)理解并掌握分数乘以整数的计算法则
难点:
在计算的过程中,能约分的要先约分,然后再乘。
设计思想:
发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。
教学过程:
一、设疑激趣:
1、下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
2、计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法:++==33=
3=这个算式表示什么?为什么可以这样计算?
教师板书++=3=
3、出示:(课件1)
这道题目又该怎样计算呢?
二、自主探索:
1、出示例1,读题,说说块是什么意思?
2、根据已有的知识经验,自己列式计算。
三、学生交流、质疑:
1、学生汇报,并说一说你是怎样想的?
方法a.++===(块)
方法b.3=++====(块)
2、比较这两种方法,有什么联系和区别?
(联系:两种方法的结果是一样的。区别:一种方法是加法,另一种方法是乘法。)
教师根据学生的回答,板书++=3
3、为什么可以用乘法计算?
(加法表示3个相� )
4.3表示什么?怎样计算?
(表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)
5、提示:为计算方便,能约分的要先约分,然后再乘。
(这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)
四、归纳、概括:
1、结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的和的简便运算。)
2、分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)
(根据学生的回答,教师进行板书)
五、巩固、发展
1、巩固意义:
(1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)
(2)改写算式:
+++=()()
+++++++=()()
(3)只列式不计算:3个是多少?5个是多少?
2、巩固法则:
(1)计算(说一说怎样算)
462148
(说一说,为什么先约分再相乘比较简便?以8为例来说明)
(2)应用题:
a.一个正方体的'礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
b.美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(3)对比练习:
a.一条路,每天修千米,4天修多少千米?
b.一条路,每天修全路的,4天修全路的几分之几?
3、发展提高:
(1)出示(课件1):说说怎样想?
(2)出示(课件2):说说怎样想?
分数乘法教案 2
教学目标:
1、使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。
2、使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。
教学重点:
分数乘整数的意义和计算法则。
教学难点:
分数乘整数的计算方法以及算法的优化。
教学方法:
自主合作探究。
教具准备:
多媒体
教学过程:
一、复习引入
1、同学们,我们已经学会了分数的加法和减法,下面口算。
2、今天我们来学习分数乘法。板书
谁能编一道分数乘法算式(择几道板书黑板一侧)
分数乘法有很多,今天先研究其中一种:分数乘整数。
看了今天的课题,可能有同学马上想知道分数乘法怎么算呢?其实,每一个新知识的产生都与原有的旧知密切相关,对于分数乘整数来说,当然也是如此。下面我们来讨论!
二、探究
1、理解意义。
出示例题1:做一朵绸花用 米绸带。
(1)小芳做了3朵这样的绸花,一共用了几分之几米绸带?
(2)小华做7朵这样的绸花,一共用了几分之几米绸带?
(3)学校庆国庆活动一共要做15朵这样的绸花,你能用加法计算出几分之几米绸带?
这么多米加起来,你有什么感觉?有没有什么好办法?有没有什么好办法?
导入:如果把这道加法算式改写成乘法,你特别需要知道什么?
谁能说说 ×3表示什么意思?7×呢?
前面大家所说的(黑板一侧板书的)乘法算式,谁能说说他们的意思?对比一下,你们觉得是分数加法简便,还是分数乘法简便?
2、探究算法。
现在我们来看分数乘整数怎样计算。我们先来研究×3, ×3=怎么算呢?请大家尝试解决。指名板演典型算法。
交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系: ,符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。
练习:×7,与原来加法结果比较,完全正确。
谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。
继续研究:×30
提示:这道题与前面几题相比可能有些新情况,你看出来了嘛?先试试看,再同桌交流。
指名板演新情况:都有相同点?(约分),不同是什么?(主要是约分的区别)
讨论:约分的先后序。(先乘后约,还是先约后乘),体会到先约后乘的简便。
练习:先判断可不可以约分?怎样约分?
总结注意事项:能约分的先约分再乘。
三、练习
填一填:练习第一、二题。
算一算:完成3第三、七题。
四、总结
本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?
五、作业
练习八第2题、第4题。
分数乘法教案 3
教学目标:
能力目标:
能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的`结果。
情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
教学重点、难点:
学生能够熟练的计算出分数乘以分数的结果。
教学方法:师生共同归纳和推理
教学准备:教学参考书、教科书
教学过程:
一、复习导入:
教师出示教学板书,请学生计算下列分数乘法运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)
二、课堂练习:
学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?
学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。
学生做第3题,让学生理解分数的几分之几与占整体“1”之间的关系。
学生做第4题,让学生能够学会比较的和占整体“1”的大小。
学生做第5题,教师注意让学生整体的几分之几是多少?
学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。
学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。
第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。
四、课堂小结:
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
是整个操场“1”的,是整个操场“1”的。
分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。
分数乘法教案 4
教学目标:
1、使学生理解分数乘整数的意义和整数乘法的意义相同,并掌握分数乘整数的计算法则,正确运用法则进行计算。
2、通过引导学生进行比较、归纳,培养学生迁移类推的能力和初步概括能力。
3、在探究活动中激发学生学习数学的兴趣。
教学重点:分数乘整数的意义和计算法则。
教学难点:为了计算简便,能约分的要先约分,然后再相乘。
教学过程:
一、复习导入
1、填空。
(1)8+8+8=()()
(2)54=()+()+()+()
(3)5个12是多少?列式为()
乘法的意义是什么?
2、计算。
二、引导探索,展示反馈
1、揭示课题。
今天开始我们学习分数乘法。首先学习分数乘整数。
2、分数乘整数的意义。
(1)出示P8例1。
(2)表示什么意义?
(3)的分数单位是多少?有几个这样的分数单位?
(4)人走3步的距离是袋鼠跳一下的几分之几?就是求什么?
(5)3个相加的和是多少?怎样列式?
(6)++,这3个加数有什么特点?还可以怎样列式比较简便?
(7)3表示什么意思?
(8)把3和125的意义相比较,引导学生归纳本部门分数乘整数的意义与整数乘法的意义相同。
3、分数乘整数的计算法则。
(1)用加法算:
(2)用乘法算:
(3)引导学生归纳:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
4、教学例2:6
学生试做,强调为了计算简便,能约分的要先约分,然后再乘。
5、尝试练习:P9做一做第1题。
三、巩固深化,拓展思维
1、P9做一做第2、3题。
2、小结:这节课学习了什么内容?分数乘整数的意义是什么?分数乘整数的计算方法是怎样的?计算时要注意些什么?
3、课堂练习:P12练习二第1、2、4题。
4、课外补充,拓展延伸
(1)、一种稻谷每千克能出大米千克,100千克稻谷能出大米多少千克?
(2)、甲、乙两袋橘子,如果从甲袋中拿出千克橘子放入乙袋,则两袋橘子一样重。原来甲袋橘子比乙袋橘子重多少千克?
分数乘法的教案 5
教学目标
1、通过学习,理解分数乘分数的计算法则也适用于分数和整数相乘,加深对分数乘法计算法则的理解。
2、进一步提高学生计算的准确性和灵活性。
3、培养学生良好的书写习惯。
重点难点
正确掌握分数和整数相乘的约分方法,灵活计算。
教具学具
口算卡,练习题投影片。
教学过程
一、导入
1、说出下面各算式的意义。
二、教学实施
1、揭示课题。
老师:我们已经会计算分数乘分数了,而整数也可以看作分母是1的假分数,所以我们也可以用分数乘分数的法则来计算分数乘整数的算式。
板书课题:分数乘整数的约分方法
2、出示例4。
(1)明确题意。
请学生读题,并找出已知条件和问题。
(2)理解题意。
少千米,用什么方法计算?为什么?
学生甲:应该用乘法计算。因为是在求一个数的几分之几是多少。
学生乙:已知速度和时间,求路程,用乘法计算。
老师:同学们从不同角度说明了这道题为什么用乘法计算,有的同学想到了分数乘法的意义,有的同学想到了“路程、速度和时间”这三者之间的关系,真的很棒。
学生互相交流,得出结论。
(3)计算。
提问:怎样计算更加简便?
明确:能约分的可以先约分再乘。
(5)分析错因。
提问:为什么第三种答案与其他两种不同呢?错在哪里?
学生自由发言。
追问:分数和整数相乘怎样约分?
小结:因为整数都可以看作分母是1的'分数,所以分数乘分数的法则也适用于分数乘整数。
3、巩固练习。
(1)完成教材的“做一做”。
学生可以先说意义再计算,集体订正答案时,请学生说出计算方法。
(2)完成教材练习一的第7题。
老师对掌握程度不同的学生可以有不同的要求,引导学生找出当一个数分别乘一个比1大的数、比1小的数和等于1的数时,积与第一个因数之间的大小关系。
(3)完成教材练习一的第8~13题。
学生独立完成后,集体订正答案。
4、出示例5。
(1)明确题意。
请学生读题,并找出已知条件和问题。
(2)探究算法。
老师:我们已经学会分数乘分数、分数乘整数的计算方法,那么分数乘小数怎么算呢?
板书:分数乘小数的计算方法
学生1:可以把2.1转成分数进行计算。
课堂设计说明
1、加强两种形式的乘法的对比练习。
学生已经理解了分数乘整数和分数乘分数的意义,通过对比练习可以找到两种形式的乘法之间的联系。
2、引导学生观察教材的约分过程,想一想与例2的约分形式有什么不同。特别要注意提醒学生要先观察能否约分,并且注意提醒他们不能把整数与分数的分子约分。
分数乘法教案 6
教学目标:
1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。
2、发展学生思维,侧重培养学生分析问题的能力。
教学重点:
理解数量关系。
教学难点:
根据多几分之几或少几分之几找出所求量的对应分率。
教学过程:
一、 复习
1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?
(1)一块布做衣服用去 。
(2)用去一部分钱后,还剩下 。
(3)一条路,已修了 。
(4)水结成冰,体积膨胀 。
(5)甲数比乙数少 。
2、口头列式:
(1)32的 是多少?
(2)120页的 是多少?
(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了 ,降低了多少分贝?
(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的 ,人现在听到的声音是多少分贝?
3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?
4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。
二、新授
1、教学例2
(1)运用线段图帮助学生分析题意,寻找解题方法。
(2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。
降低?分贝
现在?分贝
80分贝
(1) 四人小组讨论,根据线段图提出解决办法,并列式计算。
解法一:80-80× =80-10=70(分贝)
现在?分贝
80分贝?
(4)鼓励学生根据题意、结合线段图,想出第二种解答方法。
解法二:80×(1- )=80× =70(分贝)
(5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。
2、巩固练习:P20“做一做”
3、教学例3
(1)读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多 ”表示什么意思?(组织学生讨论,说说自己的理解)
(2)引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的 ”。着重让学生说说谁与谁比,把谁看作单位“1”。
(3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。
解法一:75+75× =75+60=135(次)
解法二:75×(1+ )=75× =135(次)
4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)
三、练习
1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位“1”的量。
2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。
四、布置作业
练习五第7、8、9、10题。
分数乘法教案 7
教学目标
使学生理解分数乘分数的法则适用于分数和整数相乘,提高分数乘法计算的熟练程度。
教学重难点
用分数乘分数的法则计算分数和整数相乘。
教学准备
教学过程设计
教学内容
师生活动
备注
一、 引入新课
二、教学新课
三、巩固练习。
四、课堂小结
五、作业
1、在分数乘法里,我们学过哪几种情况的计算?
2、把下面的数改写成分母是1的假分数。(口答)
36813
3、把下面的乘法算式改写成分数乘分数的形式。
2/11×36×
上面两题都是什么数和什么数相乘?
怎样改写成分数乘分数的形式?
为什么可以这样改写?这就把分数和整数相乘改写成了怎样的数相乘?
1、统一法则
由于整数可以看成分母是1的分数,所以分数和整数相乘就可以改写成分数乘分数,按分数乘分数的法则来计算。这就是说,分数乘分数的计算法则,也适用于分数和整数相乘。
2、引导计算
把这里的两道分数和整数相乘的题按分数乘分数的法则计算出结果。
说说为什么?
3、教学约分方法
分数乘法计算时,为了简便,还可以直接约分。
看课本10页上的计算。
说说是怎样直接约分的?
1、练一练上下练习
2、练习二7说出错误和改正的方法。
3、练习二8
前2题:每组里哪几题可以直接约分,那些不能,并说明理由。
后2题:说说有什么不同的地方,并口算出结果。
4、练习二9口算
5、练习二11自己练习,说说想法
练习二10
板书约分、计算过程。
课后感受
由于前面的基础较好,学生学起来挺轻松,但计算方面还有待加强。
分数乘法教案 8
教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。
教学目标:
1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。
2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。
3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。
教学重点:掌握分数乘整数的计算方法。
教学难点:理解分数乘整数和一个数乘分数的意义。
教学准备:课件。
教学过程:
一、情境创设,探求新知
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图)
师:仔细观察,从图中能得到哪些数学信息?这里的“
个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果
3.比较分析
师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:
生1:每个人吃个,3个人就是3个相加。
生2:3个个相加也可以用乘法表示为
提出质疑:3个
相加的和可以用乘法计算吗?为什么?
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个
相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。
【设计意图】呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。
(二)分数乘整数的计算方法
1.不同方法呈现和比较
师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,
的计算过程用式子该如何表示?预设:
生1:按照加法计算
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个
2.归纳算法
师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?
引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,� 但是要注意格式,约得的数与原数上下对齐。
【设计意图】通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。
二、巩固练习,强化新知
1.例1“做一做”第1题
师:说出你的思考过程。
2.例1“做一做”第2题
师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)
三、探索一个数乘分数的意义
教学例2(课件出示情景图)
(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。
预设1:求3桶共有多少升?就是求3个12 L的和是多少。
预设2:还可以说成求12 L的3倍是多少。
预设3:单位量×数量=总量,所以12×3=36(L)。
(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)
交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的
是多少。”
(3)出示第2小题学生自练。引导说出:“12×
表示求12 L的
是多少。”在这里都是把12 L看作单位“1”。
(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)
归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。
四、课堂练习,深化理解
1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的。
,吃了多少千克?
师:你能说说这个算式表示的意义吗?“求3千克的
是多少。”
2.比较两种意义
出示:一袋面包重
千克,3袋重多少千克?
师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?
预设1:一个是分数乘整数,另一个是整数乘分数。
预设2:它们表示的意义相同但有所区别。
引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。
师:那么,它们有什么是相同的呢?(计算方法和结果)
【设计意图】对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。
五、联系实际,灵活运用
1.算式
可以列成 × ,表示 ;或者表示 ;
也可以列成 × ,表示 。
师:选择一个算式进行计算,想一想,计算时要注意什么?
2.比较练习
(1)一堆煤有5吨,用去了
,用去了多少吨?
(2)一堆煤有
吨,5堆这样的煤有多少吨?
你能编写出类似的问题并加以解决吗?
3.拓展练习
1只树袋熊一天大约吃
kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?
【设计意图】练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。
六、课堂小结,拓展延伸
1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?
2.谁会用含有字母的式子表示分数乘整数的计算方法?
【设计意图】通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。
分数乘法教案 9
一、教材分析:
六年级上册第二单元围绕"分数乘法"这个主题。本单元教学内容包括三部分内容:分数乘法,解决问题和倒数。本单元是在整数乘法,分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数,小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生应用数学的意识和能力。
根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的内容单独安排。即把解决"求一个数的几分之几是多少"这一类问题组成"解决问题"一个小节,通过教学使学生理解这类问题的数量关系,掌握解题思路。与整数,小数的计算教学相同,教材体现结合具体情境体会运算意义的要求。不再单独教学分数乘法的意义,而是通过解决实际问题,结合计算过程去理解计算的意义。同时也不再呈现分数乘法的。计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观与操作等手段,在重点关键处加以提示和引导,这样可以为学生探索与交流提供更多的空间。
学情分析:
六年级的学生已经掌握整数乘法,小数乘法的计算,对于分数有一定的理解,能够在现实情境中体现和理解数学的理念。思维已经向抽象发展,需要学习透过事物表象揭示事物的本质。
二、单元目标解读
根据第三学段提出的"计算和运用"目标和本单元的特点确定本单元的教学目标:
1、理解并掌握分数乘法的计算方法,会进行分数乘法计算。
2、理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。
3、会解答求一个数的几分之几是多少的实际问题。
4、理解倒数的意义,掌握求倒数的方法。
本单元的教学重点,难点是:
1、掌握分数乘法的计算方法,会进行分数乘法的计算。
2、会解答求一个数的同分之几是多少的实际问题。
3、理解和掌握求倒数的方法。
三、主题单元教学构想:
(一)注意三个原则
1、在已有知识的基础上,帮助学生自主构建新的知识。
2、让学生在现实情景中学习计算。
3、改变学生学习方式,通过动手操作,自主探索和合作交流的方式学习分数乘法。
(二)设计思路
本单元教学内容计划用15课时。
第一部分:分数乘法(7课时)
1、通过直观与操作帮助学生理解分数乘法的算理,会正确进行计算。
2、加强自主探索与合作交流。
第二部分:解决问题(5课时)
1、紧密联系分数乘法的意义,理解和掌握解决问题的思路与方法。
2、借助线段图帮助学生理解数量关系。
第三部分:倒数的认识(1课时)
1、让学生充分观察讨论,找出算式的特点。
2、特别理解"互为倒数"的含义
第四部分:整理和复习(2课时)
1、以知识整理措施形式回顾本单元的主要学习内容。
2、安排练习。
四、教学反思
"分数乘法"是这一单元的核心内容,不仅分数除法是以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握分数乘法具有重要的意义。教学本单元后我的感受是:
1、分数乘法解决问题对单位"1"的理解,重点应放在在应用题中找单位"1"的量以及怎样找的上面。为以后应用题教学作好辅垫。
2、在以后教学前我还要深钻教材,把握好课本的度。
3、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学。提高教学质量。
分数乘法教案 10
教学目标:
1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、培养学生大胆猜测,勇于实践的思维品质。
教学重点:
会进行分数的混合运算,运用运算定律进行简便计算。
教学难点:
灵活运用运算定律进行简便计算。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1、运算定律。
我们在四年级时学习过乘法的运算定律,同学们还记得吗?
(学生回答,教师板书运算定律)
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
2、这些运算定律有什么用处?你能举例说明吗?
25×7×4 0。36×101
(学生口述自己是怎样应用乘法的运算定律简算上面各题的。)
二、自主探究(自主学习,探讨问题)
1、引入
同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。
(板书课题:整数乘法的运算定律能否推广到分数乘法)
2、推导运算定律是否适用于分数。
(1)学生发表对课题的见解。
(2)验证
有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)
3、教学例5。
(1)出示:,学生小组合作独立解答。
4、教学例6。
(1)出示:,学生小组合作独立计算。
(2)小组汇报学习成果,说一说你们组应用了什么运算定律。
5、小结
应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。
三、拓展总结(应用拓展,盘点收获)
1、完成练习三的第6题。
学生说一说应用了什么运算
2、完成课本第10页的“做一做”题目。
其中第2题引导学生讨论解题思路,把87改成“86+1”应用乘法分配律计算比较简便。
分数乘法教案 11
教学目标
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重难点
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教学过程
一、复习
出示复习题。
1、根据题意列出算式:
5个12是多少?
3个14是多少?
2、下列句子中那些可以看做单位1
猎豹的速度是狮子的七分之三。
参加合唱队的同学占全班人数的五分之一。
红花比黄花多二分之一。
十月比九月节约四分之三。
3、计算:3/10 +3/ 10 + 3/10 =
3/10 + 3/10+ 3/10这题我们还可以怎么计算?
今天我们就来学习分数乘法。
二、新授
1、利用3/10 + 3/10 + 3/10教学分数乘法。
(1)这道加法算式中,加数各是多少?(都是3/10)
(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 ×3)
(3)3/10 +3/10+ 3/10=9,那么3/10 + 3/10 + 3/10= 3/10 ×3,
所以3/ 10 ×3=____________=9。同学们想想看,3/10 ×3=9计算过程是怎样的?
谁能把它补充完整
2、出示例1,
(1)理解题意:
引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的2/11 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)引导学生根据线段图理解,
“人跑一步的距离相当于袋鼠跳一下的2/11 ”是什么意思?如何理解“相当于”?再通过线段图帮助理解。画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠
跳一下的2/11 ”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个2/11是多少?
(列式:2/11×3 = 6/11)
有没有更简便的计算方法呢?独立完成。指生板演。出示课件演示。
3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
4、练习:练习完成“做一做”第2题。
5、教学例2
(1)出示3/8×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
6、练一练,课件出示,学生独立计算。然后订正。
三、巩固练习
比赛:
第一回合
1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
第二回合
2、“做一做”第3题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
四、课堂总结:
今天你有什么收获?
分数乘法的教案 12
教学目标:
1、通过练习巩固稍复杂的分数乘法实际问题的基本方法,明确解题思路。
2、通过变式题、开放题的训练,锻炼学生的思维,提高分析问题的能力。
3、在解决问题中,引导学生认真思考,培养合作精神和克服困难的勇气,激发热爱数学的情感。
教学重点:
一步计算的分数乘法问题和两步计算的分数乘加、乘减问题,用分数表示的数量关系的理解以及解答的方法。
教学难点:
理解分数表示的“分率”和“具体量”的区别。
教学过程:
一、创设情境,切入课题
朗读诗歌。出示《春》的诗句:
春水春池满,春时春草生。春花绽春蕊,春雨伴春风。春鸟弄春色,春人忙春耕。
这首诗的最大特点是什么?你能用我们学过的数学语言来描述吗?能编一些分数乘法解决的问题吗?
例如:“春”的字数占总字数的`几分之几?
《春》这首诗共有30个字,光“春”字就占了全诗的五分之二,其他字有多少个?“春”字只比其他字少几个?
学生解答后交流解题思路
小结:通过前面的学习,同学们已经初步掌握了分数解决问题的关键,要找准单位“1”,要理解分数的含义;这节课我们重点来进行有关分数解决问题训练。
二、基本练习,掌握方法
题目要求:根据下列关键句,你都能想到什么(训练学生从以下四方面说)
(1)梨子的数量是桔子的五分之二;
五分之二表示()与()的数量关系;
()表示“1”;()表示五分之二;
根据数量关系列示()×()=()。
(2)一袋米,还剩七分之三;(先补充完整“还剩谁的七分之三”)
(3)火车速度比汽车快三分之一
(4)实际烧煤比计划节约八分之三
小结:我们在遇到含有分率的分数问题是要先确定单位“1”和分析数量关系;这是解决此类问题的关键。
三、课堂检测:
1、小强想买一台5600元的电脑,他现在只有这台电脑单价的五分之三的钱,小强要买这台电脑还差多少钱?
2、甲、乙两地相距240千米,一辆汽车从甲地到乙地,已经行驶了120千米,再行驶多少千米距离乙地还有全程的六分之一?
3、一桶油重200千克,第一次用去它的八分之五,第二次用去剩下的五分之二,第二次用去多少千克?
分数乘法教案 13
教学内容:第45页例题4、5
教学目标:
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
教学重点、难点:
分数乘分数的计算法则。
对策:
使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
一、 复习
1、计算下列各式
1/15╳5= 2╳2/3 = 7/8 ╳14= 15/6 ╳24=
2、说说整数与分数相乘的计算方法?先约分再计算还是先计算再约分方便?
二、 新授
1、出示例题4题目和图。
2、理解题目意思。
3、你知道左边图中画斜线的部分占1/2的几分之几?是这张纸的几分之几?你是怎样想的?
4、右边呢?
5、你能看图用算式来表示结果吗?填在书上。组织交流。
6、总结:求一个分数的几分之几是多少,也可以用乘法计算。
7、探究:观察这两个算式,猜才分数与分数相乘是怎样计算的?
学生说出自己的猜想。
验证猜想,教学例题5。
(1)出示例题5
(2)在图中画斜线表示计算结果,再填空。
(3)组织交流:你发现积的分子、分母与两个因数的分子、分母各有什么关系?
(4)总结得出:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
三、巩固
1、出示 1/42/3 8/93/4
2、学生独立完成,指名板演
3、可能出现两种:先乘再约分 或先约分再相乘
引导学生比较这两种方法谁更好?如果是24/7755/8呢?再次体会到先约分再计算比较简便。
4、介绍简便书写格式,发现可以在算式上直接约分,再计算,提高速度。
四、比较
出示2/113和45/6,先计算,再比较,分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?
所以不管上分数乘整数还是分数,都可以看作是分数乘分数的计算方法来计算。
五、巩固提高
您现在正在阅读的苏教版《分数乘法》第四课时教学设计文章内容由收集!本站将为您提供更多的精品教学资源!苏教版《分数乘法》第四课时教学设计1、第46页上的练一练
先独立计算在书上,指名板演,再组织交流。
2、第48页上的第1题
读题先在图中表示出来,再列式计算。组织交流想法。
3、第48页上的第3题
先独立判断,将不对的改正过来。组织交流:是否正确?错在哪里?怎样改?最后是多少?
4、第48页上的第4题
先独立计算,再组织交流:上下两题有什么相同的地方?结果怎样?
六、布置作业: 练习九 2、5
课前思考:
教学例4和例5时,我想如果借助投影仪依次呈现长方形图,可能会对学生思考问题有帮助,特别是对于一些学习困难生来说,这样便于他们直观地看出所求部分占了这张纸的几分之几。当然,最后还是要让学生从直观图中抽象出本质的东西,即认识到分数与分数相乘的计算方法。
在试一试的教学中,要分三个层次进行。第一层次是计算分数乘分数时用先约分再计算的方法;第二层次尝试用分数乘分数的方法计算分数乘整数;第三层次学习直接在题中约分的方法来计算分数乘法。估计这么多的计算方法一下子呈现在学生面前,会使一部分学生不知所措。课中教师要多关注学生学习情况,及时调整教学行为。
课前思考:
例4的教学可分三步进行,第一,看图理解1/2的1/4和1/2的3/4表示的意义,联系图弄清分别是这张纸的几分之几。第二,进一步明确求1/2的1/4或1/2的3/4是多少,也可以用乘法。第三,前两步的思考过程完成教材上的填空,建立关于分数乘分数计算方法的初步猜想。
例5可以根据例4的猜想,算出算式的积,再通过画图验证。教学时让学生观察比较几个算式的因数和积,通过交流归纳出分数乘分数的计算方法。
在介绍简便书写格式,发现可以在算式上直接约分再计算,学生可能在整数乘分数时会把整数同分子约分,教学时要进行强调。
课后反思:
本节课在教学时,我借助直观的图形,不仅让学生掌握分数与分数相乘的计算方法,更重要的是让学生理解分数乘分数的含义。并在例题教学之后增加了一个画一画环节----(1)教师写一个分数乘分数的算式,让一个学生上黑板画图表示算式的意义,要求边画边说为什么怎样画;(2)再写一个分数乘分数的算式,让全体学生独立画图表示,再同桌交流,最后指名交流。这样学生对分数乘分数的意义有了更深的认识。
在第48页第4题练习时,加强了分数乘法与分数加法的对比,强化计算方法区别,防止学生对两种计算出现混淆。
课后反思:
反思本节课的教学,在例4的教学中由于要借助直观图来思考1/2的1/4和1/2的3/4是这张纸的几分之几,所以忽略了指导学生理解1/2的1/4和1/2的3/4所表示的意义,这是今天这节课上的一处败笔。因为对于分数乘分数的计算方法的推导和理解、运用,对于学生来说反而不存在太大的问题。
从学生作业情况来看,遇到整数乘分数时,往往出现错误,分析原因是计算时不会把整数改写成分母是1的分母来计算,出现分子和分子约分的现象;还有些学生约分时仍存在错误,这样就造成乘法计算错误。
估计明天的课上计算分数连乘时问题会更多,教学时要思考对策。
课后反思:
通过教学,学生能理解分数乘分数的意义,掌握分数乘分数的计算方法,并通过学习分数乘分数的计算方法适用于分数与整数相乘,体会数学知识的内在联系,感受数学知识和方法的应用价值。
对于能约分的可以直接在题目上约,课堂上进行了讲解和示范,但在做作业时考虑到有部分学生约分时容易出错,我还是让学生写出了分母和分母相乘,分子和分子相乘的那一步,再约分,最后计算。从作业的反馈情况来看学生的计算的正确率也比较高
分数乘法教案 14
练习内容:练习二中的第5~10题
练习目标:使学生熟练掌握分数乘法的计算方法,并能正确地进行计算。
练习过程:
一、基础练习
1、口算
××××
14×15×××5
2、计算
××427×
过程要求:
(1)请三位学生上台板演,其余学生做在练习本上。
(2)集体反馈,学生计算过程。
(3)着重强调约分的操作步骤。
二、专项练习:
完成练习二第5~10题
1、第5题
(1)提问各算式的意义。
要求学生根据示意图,分别说一说×、×、×各表示什么?结果是多少?
(2)将结果写在书上。
2、第6题
(1)认真审题,弄清题意。
(2)分别说明三个问题各属于什么类型的问题。
(3)列式计算。
3、第7题
学生独立完成后,说一说你是怎样做的?
4、第8题
学生列式计算,教师巡视,然后集体订正。
5、第9题
(1)学生判断正误,并说明原因。
(2)改正算式。
6、第10题
(1)学生列式计算,教师巡视进行个别指导。
(2)说一说你有什么体会。
三、课后作业设计:
一、计算。
×××14×
×120××24×18
二、列式计算
1、米的是多少米?
2、千克的是多少千克?
3、吨的是多少吨?
三、解答下列问题。
1、一辆汽车每小时行驶60千米,小时行驶多少千米?
2、一个长方体长米,宽米,高米,它的体积是多少立方米?
课后反思:
人教版六年级上册数学《分数乘法》教案 15
【教学内容】
小学数学六年级上册第2页。
【教学目标】
1.让学生在探索过程中理解分数乘整数的意义及算理,掌握分数乘整数的计算方法。
2.让学生通过观察、操作、比较等活动,经历数学建模的过程,积累数学活动经验。
3.通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。
【教学重难点】
重点:让学生在探索过程中理解分数乘整数的意义及算理,掌握分数乘整数的计算方法。
难点:通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。
【教学准备】
课件、作业纸
【教学过程】
一、建立“算法”模型
(一)直观体验
1.出示:小新、爸爸一起吃一块蛋糕,每人吃块,2人一共吃多少块?
(1)列出算式,并说说这样列式的道理。
(2)汇报并板书:或。
引导得出:求几个几分之几相加,可以直接列乘法算式。
(3)这道乘法算式与我们以前学过的有什么不一样?(板书课题:分数乘整数)
(4)如果用直条图表示1块蛋糕,你能在图中表示吗?
(5)根据图,的结果是多少?(板书:)
2.如果有4个人一共吃多少个?
(1)列出算式。(板书:)
(2)在直条图中表示,并写出结果。
(3)板书:
3.如果有7个人一共吃多少个?
(1)列式,并在直条图中涂一涂找到结果。
(2)板书:
(二)比较发现。
1.比较:你发现了什么?
2.思考:为什么分母不变,分子乘整数?
(1)结合图,从分数的'意义上解释:里有1个2份,表示有2个2份,所以一共涂出4,其他两道算式同理。
(2)转化为加法算式,利用同分母分数计算法则解释。
其他两道算式同理。
3.验证。
出示
(1)直接算出结果。
(2)在方格图中涂一涂,表示。
(3)验证计算结果是否与实际涂色结果一致。
(三)推而广之。
1.每人吃块蛋糕,C人一共吃多少块?
列式并计算。(板书;)
2.每人吃块蛋糕,C人一共吃多少块?
列式并计算。(板书;)
(四)回顾反思。
1.说一说,分数乘整数可以怎样算?(板书:用分子乘整数的积作分子,分母不变。)
2.我们怎么找到分数乘整数的计算方法的?
二、应用“算法”模型
(一)在应用中优化。
1.介绍另一种算法--先约后乘:
2.感受优越性。
出示:
(1)展示做法:
(2)比较两种做法:你觉得哪种方法好?好在哪里?
3.专项练习。
先判断能否先约分,再计算出结果。
三、在解决问题中应用。
1.一袋面包重千克,3袋重多少千克?
2.李老师用铁丝围了一个正方形,围成的正方形的边长是,那李老师围这正方形用去多少铁丝(接头处忽略不计)?
(三)在应用中分化。
《分数乘整数》教学设计说明
《分数乘整数》是小学数学计算教学中重要的一环。它是在学生学习了整数乘法,理解了分数的意义和性质,掌握了分数加、减法的基础上进行教学的,同时又是学生学习分数乘分数和分数乘百分数的重要基石。
本节课设计的理念主要有以下两个方面:
一是注重依靠算理掌握算法。
计算课的教学不仅需要掌握算法也需要讲清算理,算理是算法的理论依据,算法是算理的提炼和概括。二者是相辅相成的。在教学中采用数形结合、转化等教学策略促成算理与算法的有效融合。
二是注重“算法”的模型的建立。
分数乘整数的计算法则就是一个数学模型,教学时应该让学生在理解算理时适时、适度、抽象地提炼算法,有效建模。
本节课设计的说明主要有以下三个方面;
1.在直观体验环节中,通过具体的涂色操作,一方面加深学生理解分数乘整数的意义,另一方面通过数形结合,帮助学生直观地理解算理。
2.算法模型的建立不是靠一个例子来完成的,而是在不同算式的背后找到共性,并通过验证活动,让学生先初步建构分数乘整数的计算方法,然后逐步将数抽象为字母,让学生用简练、准确的符号将分数乘整数的计算方法表达出来,形成模型,最后通过回顾反思,帮助学生将获得算法模型的过程进行有效梳理。直观操作、比较分析、猜测验证、概括抽象等活动是形成模型的必要环节,经过学生的整理与总结,模型的建立更加扎实,同时积累了相关建模活动经验。
3.在应用环节的教学中分三个层次。第一个层次,通过比较让学生直观感受到“先约后乘”
方法的优越性。方法的优化不是刻意的,而是学生在应用对比中乐于接受的。第二个层次,将计算教学与应用教学紧密结合起来,利用模型求解可以帮助学生深刻领会所学知识,顺利构建数学体系,从而大大提高学生解决实际问题的能力,使学生数学素养得以提升。第三个层次的练习,便于让学生进行模型与模型之间的区分,明白模型与模型的建立和使用是在特定范围内的。
分数乘法教案 16
练习内容:练习二中的第5~10题
练习目标:使学生熟练掌握分数乘法的`计算方法,并能正确地进行计算。
练习过程:
一、基础练习
1、口算
××××
14×15×××5
2、计算
××427×
过程要求:
(1)请三位学生上台板演,其余学生做在练习本上。
(2)集体反馈,学生计算过程。
(3)着重强调约分的操作步骤。
二、专项练习:
完成练习二第5~10题
1、第5题
(1)提问各算式的意义。
要求学生根据示意图,分别说一说×、×、×各表示什么?结果是多少?
(2)将结果写在书上。
2、第6题
(1)认真审题,弄清题意。
(2)分别说明三个问题各属于什么类型的问题。
(3)列式计算。
3、第7题
学生独立完成后,说一说你是怎样做的?
4、第8题
学生列式计算,教师巡视,然后集体订正。
5、第9题
(1)学生判断正误,并说明原因。
(2)改正算式。
6、第10题
(1)学生列式计算,教师巡视进行个别指导。
(2)说一说你有什么体会。
三、课后作业设计:
一、计算。
×××14×
×120××24×18
二、列式计算
1、米的是多少米?
2、千克的是多少千克?
3、吨的是多少吨?
三、解答下列问题。
1、一辆汽车每小时行驶60千米,小时行驶多少千米?
2、一个长方体长米,宽米,高米,它的体积是多少立方米?
课后反思: