《比的意义教案【优秀4篇】》
作为一位兢兢业业的人民教师,时常要开展教学设计的准备工作,借助教学设计可使学生在单位时间内能够学到更多的知识。那么应当如何写教学设计呢?为大家精心整理了比的意义教案【优秀4篇】,希望能够帮助到大家。
《比的意义》教案 篇1
第1课 培养审美的眼睛——美术鉴赏及其意义教学设计
一、 教学目标
本课作为高中整个美术鉴赏教学的开,对后面的教学具有指导意义。通过本课的教学,使学生初步了解什么是美术鉴赏、美术鉴赏的一般过程和特征,以及学习美术鉴赏有什么意义,由此掌握美术鉴赏的方法,培养学生“审美的眼睛”。
二、教学的重点与难点
本课教学的重点:培养审美的眼睛,掌握美术鉴赏的一般方法,认识美术鉴赏对于个人未来人生发展的重要价值和意义。
本课教学难点:主要是如何结合实例讲清美术的主要分类方法、美术鉴赏的概念和美术鉴赏的一般过程或方法。
三、教学方法
讲解法 多媒体教学
四、教学过程
(一)导入新课
同学们,世界上有这样一个地方,它收藏了许多举世闻名的作品,其中有一幅作品它的微笑被后世人称这神秘的微笑,有谁知道这幅作品的。名字?它被收藏在哪?(学生回答:《蒙娜丽莎》 卢浮宫)有没有同学去过?现在我们就一起走进卢浮宫(播放视频《卢浮宫之旅》)。
当我们看到各类美术作品时,大家可能会疑惑,这些作品哪些是好作品,画的什么内容,为什么要这样去表现?如果你有这样的疑问,这其实就涉及到美术鉴赏的问题,因为提问正是鉴赏的开始。
同学们自读课本第2到6页,思考以下问题:
1、什么是美术鉴赏?如何进行美术鉴赏?
2、美术作品的门类有哪些?
3、美术鉴赏的意义与价值?
(二)讲授新课
1.出示图片《天安门广场》《黄山日出》
提问:面对这些景观有何感受?
学生回答:壮观、崇高、神圣
教师:两种不同的美: 一种是自然景观;一种是人文景观。
培养审美的眼睛有两个途径: 一是欣赏大自然;如:黄山、九寨沟瀑布等。
二是欣赏第二自然——由人创造的艺术品。 如:天安门周围的建筑、艺术家的作品等。
2.话题1:什么是美术鉴赏? 怎样进行美术鉴赏?
出示张萱《捣练图》和 米勒《拾穗》,思考:两幅作品有什么相同点和不同点?
学生讨论并思考。
提示:从以下五个方面进行分析:
主题内容
年代
材料
历史背景
作者创作意图
学生回答:相同点:都是一劳动妇女为题材
不同点:前者:贵族妇女 平和优雅的美 画
后者:贫穷妇女 让人产生同情 油画
提问:为什么同题材的作品而给人的感受不同呢?
教师:《捣练图》的作者张萱处于盛唐,他是唐玄宗时期的宫廷画师,“练”是一种丝织品,刚织成时质地坚硬,必须经过沸煮,日晒漂白,再用杵捣,最后才能使丝绸变得柔软洁白,画中分成三组,捣练、理线、熨烫,还有一个年少的女孩淘气的从布底下窜来窜去,可见当时社会稳定,人民生活水平提高,没有血腥的战争和激烈的社会矛盾,因此画面平和优雅。《拾穗》是19世纪法国画家米勒所画,画中3个贫穷的农妇正在捡拾麦田里散落的麦穗,因为当时法国正处贫富差距加大,阶级矛盾尖锐的时期,米勒本身出生在农村家庭,从小在农田里长大,这也决定了他以后的审美取向,歌颂劳动者质朴、勤劳的美德,永远散发着泥土的气息。
以上对两幅作品的分析实际上就是美术鉴赏的全过程。我们在欣赏作品和针对作品思考解决以上问题的过程,其实就已经进行了美术鉴赏。
出美术鉴赏的概念:美术鉴赏就是运用我们的感知、经验和相关知识对美术作品进行感受、体验、联想、分析和判断、从而获得审美感受。
怎样去鉴赏?具体地说,就是要弄明白一件美术作品的作者、创作年代、材料、语言形式和表达内容、以及作品产生的社会历史背景等等。
3.话题2:美术作品的门类有哪些?
请学生们从课本中找出答案并大声朗读出来,教师出示图片让学生们更深入了解。
教师:
根据其艺术门类划分为:
绘画、雕塑、建筑、设计(工艺)、书法(篆刻)、摄影等六大类。
绘画按材料和功能:油画、画、水粉画、水彩画、版画、年画、壁画等等。
雕塑按空间:圆雕、浮雕。
设计按内容和材料:服装设计、工业设计、广告设计、环境艺术设计、家具设计、页设计等。
出示郎世宁《白骏图》徐悲鸿《奔马图》和韩美林《奔马》进行比较分析,谈谈这三幅作品的造型手法有什么不同?
按形式语言上划分为: 具象艺术 意象艺术 抽象艺术
4.话题3:美术鉴赏对我的人生真的那么重要吗?(美术鉴赏的意义与价值)
衣、食、住、行只是最简单的生存层面,它们都离不开美术,自然也离不开美术鉴赏。
我们来看一下美术作品带来的价值与功能。
美术从诞生之日起,就承担着自己的社会角色。它的价值与功能主要体现在三个方面:
● 认识功能 ● 教育功能 ●审美功能
认识功能:
通过美术作品的内容或形式,认识不同时代、不同文化、不同民族下的人们的生活、历史、风俗、观念等。 如张萱《捣练图》
教育功能:
美术作品的内容和主题对观众形成和道德上的感染和影响,以培养人们对待自然、社会、人生以及自我的态度。如董希文《千年土地翻了身》
审美功能: 培养人们对美的事物、美的形式的辨别力、敏感性和感受力。如《根扎南国》 吴冠中
(三)课堂作业:
从本书中选取一件你最喜欢的美术作品,进行鉴赏并填写鉴赏报告单。
鉴赏报告单
作 品
年 代
门类(材料)
形式语言
时代背景
表达内容
(四)教学:
艺术来源于生活。培养审美的眼睛,可以更好的观察生活中的艺术。这节课,我们为培养一双审美的眼睛奠定了初步的基础。另外,还请同学们注意,要能欣赏千奇百怪的现代艺术,还必须树立全新的艺术观念,在此基础上,平时多看多分析,定会使审美的能力得到更好的提高。
教学后记:
本课是美术鉴赏的第一课,学生们对美术鉴赏课比较陌生,首先对于新课程改革要做一个介绍,并简要介绍《美术鉴赏》这本教材。这节课,教师讲解比较多,我结合多媒体出示图片,同学们都比较感兴趣,然而,有些班级的学生仍胆子较小,不敢回答,有些班级的学生比较积极,并踊跃回答问题。我发现,教师的引导相当重要,当学生回答不上问题时,要学会从不同角度去引导学生开口,直到引导出他们说出答案。这一节课,我出示了一道课堂作业,主要是检验学生们对于鉴赏知识了解多少,因此,在讲解知识点时,尽量将这些专业术语讲得浅显易懂,这对于以后的学习是至关重要的。上完一堂后,我感觉课堂上要多多师生互动,尽量让学生踊跃去回答,才能激发他们发挥一定的想象力,提高他们的审美能力。
比的意义优秀教学设计 篇2
教学内容:
人教版小学数学第十一册46页—47页。
教学目标:
1、引导学生在参与、探索的过程中,发现并理解比的意义、比与分数、除法的关系,认识比的各部分的名称,学会求比值。
2、在引导学生知识的发现和探究实践中,培养学生观察、比较、分析事物的能力。发展学生自主探究的意识,并从中感受到数学与生活的密切联系性。
教学重点:比的意义。
教学难点:比和除法、分数之间的联系和区别。
教学过程:
一、回忆生活素材,导入新课。
师;生活中经常有同学说谁比谁高点,谁比谁矮点。也就是说我们要经常比较数量。师:我们学习的数学知识有很多是来源于生活。请同学们根据自己的生活经验估算一下,教室前面的黑板长、宽各大约是多少米?生:长大约是4米,宽大约是3米。师:你们根据这两个数据,你能提出什么问题呢?生1:黑板的面积是多少?
生2:黑板的周长是多少?
生3:长是宽的几倍?板书:4÷1生4:宽是长的几分之几?板书:1÷4
师:长是宽的几倍,宽是长的几分之几是我们以前学过的用除法对黑板的长和宽进行比较,今天,我们要在此基础上,来学习一种新的数学比较方法。(板书:比)
[评析]:著名的教育家布鲁纳曾经说过:探索是数学的生命线。导入新课时,教师能紧密联系学生的生活实际,采用教室里的各种素材引入课题,不仅是学生感到数学知识的亲切自然,而且容易激发学生的学习兴趣和探索意识。
二、充分感知,建构意义1、整理生活素材
师:如长是宽的几倍,除了用4÷1来比较,还可以说成长和宽的比是4比1。(板书:4÷1=4:1)
宽是长的几分之几,除了用1÷4来比较,还可以说成什么呢?(1÷4=1:4)师:同学们用刚才调查方法,说说教室各种事物还能得到什么数据。你还能把它们用比的形式说一说吗?
生1:我班男同学人数是32人,女同学人数是23人。男生与女生的比是32比21。生2:教室里的窗户扇数是48扇,门的扇数是2扇。教室窗户扇数与门扇数的比是48比2。生3:教室的长大约是9米,宽大约是6米。教室长与宽的比是9比6。学生可以说出许许多多的数据。(学生情绪高涨,一分钟后陆续汇报。)
2、再次回忆生活素材,学习新课。师:同学们再仔细观察教室里面还有哪些劳动工具,你平常留意过它们的价格与把数有什么关系吗。我们请两位同学去数一数扫帚的把数,也请全班同学想想每把扫帚要多少钱。根据这些数据你能提什么出什么问题?生:教室里有23把扫帚,从街上买回来要46元钱。生:扫帚总钱数与扫帚把数的比是46比23。(板书:46:23)师:同学们真是聪明,请比较黑板上的最后一组比与前面的几组比在数量上有什么相同和不同的地方。生:前面的比是同一种数量相比较,最后一组比是不同的数量相比较。生:这些相比的数都是只有两个数。师:相同的数量可以进行比较,不同的数量也可以进行比较。相比的数最少要有两个。师:同学们还能说说生活中还有哪些数的比是不同的数相比,请同学们多多举例说明。生:车辆行驶的路程与时间,工作总量与工作时间。等等数据的比都是不同数量的比。生可以举出很多的例子。师:请同学们认真观察黑板是这些数的比是怎么得出来的。谁能说说什么是比?生;这些比都是从两个数相除引出来的,两个数相除又叫做两个数的比。(板书比的定义)师:比是由除法变成的,由于除法的除数不能为零,比的哪一项不能为零呢?请同学们讨论。
3、练习:判断下面各题是否正确,并说明理由。⑴比的前项是0,后项是1。⑵比的前项是1,后项是0。⑶比的前项和后项都是0。
学习比的写法:师:你们学会了比的意义,那么比是怎样写的呢?我们来学习比的写法。请学生自学课本上比的写法。请学生上黑板板书比的各部分名称。师;比是由两个数相除得到的,那么我们可以怎样去求比值呢?生;用比的前项除以比的后项,这就是求比值的方法。师:我可以告诉大家它是一个比。比有时也可以用分数形式表示,如:9:6也可以写成9比6。在这里它不是一个数,是一个比。
师:从这道题你能发现比值的取值范围吗?
生:比值可以是整数,可以是小数,但更多形式是分数。
4、练习①说出下面每个比的前项和后项,并说出比值。
(生积极思考,踊跃回答)师:比除了可以写成这种形式外,还可以写成分数形式。(板书:1:4=),请同学们读一读。特别注意分数形式的比。
[评析]:在这个环节的教学中,教师能采用学生熟悉的事物进行探究,在分析比较中抽象概括出比的意义。同时,教师加强了引导,学生则采用了讨论法、读书自学法来进行探究学习。多种机会的创设,为学生提供了表现自己的机会,也为学生提供了多层次、多规则发展的机会,有助于学生创新能力的提高。
5、比与除法、分数的联系:①比与除法的联系:师:请同学仔细观察比与除法有什么联系?同桌讨论。并填写下表:
比前项比号后项比值
除法
分数
②比与分数之间有什么联系师:请同学们自学课本。同桌讨论。生自学课本,并完成上表。师:可能有的同学发现了三者并不一样,比是表示两数的关系,除法是一种运算,分数是代表一个数的。
在学生初步认识了比的意义后,为了区别数学中的“比”和体育比赛中的“比”的不同,我运用学生活动中常使用的小游戏“锤子、剪子、布”,虽然游戏时间很短,但取得了事半功倍的效果。师:下面请大家来做一个游戏,“锤子、剪子、布”好吗?要求是两人一组,赛四局,然后汇报比分情况。
(学生情绪高涨,一分钟后陆续汇报。)
生1:(很高兴)四局比赛我赢了,4比0。
生2:我和同伴打平局2比2。
生3:我和同桌的比赛结果是2比3。
……
师板书:4:02:32:20:43:1
生:老师,比的后项不能为0,这里为什么是0呢?
生:比赛中的比和我们今天学的比一样吗?
生:这个2:2可以化简比吗?
(没等我组织学生讨论,就有学生站了起来。)
生:2:2只表示双方各得二分,不表示相除关系,不可以化简。
生:4:0表示对方得0分。
……
师:对!说得好。这是比赛中的一种计分形式,目的是让观众看清两队得分情况。
生(杨崇俊):足球比赛的计分也有几比几,但它与今天学的比的意义不同。体育比赛中的比是表示两个数的结果,而我们数学里的比是表示两个数的关系。
[评析]:在本节教学中,我采用了“小游戏”,让学生身临其境,在他们感兴趣的条件下理解“比”的意义。在活动中,学生不是听众,而是参与者,他们可以获得许多不同的感受,并随时提出不同的质疑,无论是质疑还是得到的启迪都是最大的收获,可以说是小小的成功。
因此,教师精心创设探索、操作实践的情境,对学生创新思维的发展至关重要。在今后的教学中,要让学生真切体验、领悟、发现,最大限度地发挥他们的创造潜能,让课堂中的每一分钟都有满分的收获。
三、巩固练习:
①、苹果是梨的,苹果与梨的比是():()
②、我班的男生是女生的1倍,男生人数与女生人数的比是():(),女生人数与男生人数的比是():()
③、400千克与0.2吨的比是():()(能直接说出比吗?为什么)强调不同单位名称不能直接相比。
④开放题:选择合适的数量组成比
我校共有学生780人,教师38人,本学期中平均每个学生获得优点卡3张,五年级有学生170人,本学期共获得优点卡560张,其中五(1)班有男生20人,平均每人获得优点卡3.5张。
学生回答后讲评。
[评析]:数学教育家波利亚指出:学习任何知识的最佳途径是自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。对于比与分数、除法之间的联系,采用同桌讨论学习、自学的方法,让他们交流、启发,实现有模糊到清晰的过程,正是让学生充分展现自己思维的过程。最后一个开放题的设计,注意联系了我校的特色建设,让学生在“再创造”的过程中巩固新知,创新思维。
四、小结归纳,应用拓展
全课小结:现在请大家闭上眼睛,想想今天这节课有什么收获?还有什么疑惑?把你的收获说给你的好朋友听,相互评价一下,学得怎么样?如果有什么疑惑,说给大家听,我们一起想办法解决。好不好?
[评析]:新的课程标准强调培养学生的应用意识,要让学生认识到现实生活中蕴含着的大量的数学信息、数学在生活中的重要性。结尾部分重点让学生对本节课的教学内容进行有序地梳理,并且帮助老师解决难题,使学生对所学的内容进行了拓展。同时在相互的评价中,使每个学生进一步体验数学学习的成功感。
课后反思:
《比的意义》是学生初次接触比的知识的第一个内容。能否透彻理解比的意义,对于比其他知识的学习,起到了至关重要的作用。可以说这节内容在整个比的知识中占有举足轻重的地位。并且《比的意义》中包含的知识点比较多,如:比的意义、比的表示方法、比的各部分名称、比值的求法、比与除法和分数之间的联系和区别、比的后项不可为零。如何把这么多的知识,通过学生在自主探究中发现并解决?多个知识点紧促而成功的串联是我课前备课中的一个主体思想。因此入课时,引导学生通过对教室里黑板长与宽的比较,引出“比”来,让学生感受比在实际生活中的应用,这也是我们课题思想的一个体现。接下来每个知识点的教学,始终通过学生的自主探究,在不断发现问题——解决问题——又发现问题的螺旋式上升过程中进行。每一个知识点的出现和解决不是程序式的,而是抓住学生回答中出现的问题展开教学。教师在不是被学生牵着走,而是让学生自己走。游戏和练习题都体现了开放性。这都体现了新课标的理念。本课重点、难点都得到了突破,学生在轻松愉快的氛围中完成了丰富的教学内容。
比的意义教案 篇3
教学内容:
书第68-69页例1、例2,试一试、练一练和练习十三的1―5题。
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
教学重点:
理解比的意义。
教学难点:
理解比与分数、除法的关系。
教学准备:
多媒体课件。
教学过程:
一、谈话导入
1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)
2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?
二、教学例1
(一)、呈现例1:
1、利用旧知进行比较:
(1)图中提供了2个数量:2杯果汁和3杯牛奶。根据这两个数量,我们怎样来对果汁和牛奶的杯数进行比较?(根据学生回答,教师整理板书:)
相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3
果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2
(2)小结:同学们,我们已经知道两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。今天我们认识的比就是专门对这后一种关系进行的研究。
2、“比”的教学:
(1)(指板书:)“果汁的杯数相当于牛奶的2/3”。我们还可以说成“果汁与牛奶杯数的比是2比3(出示)”。想一想,“牛奶的杯数相当于果汁的3/2”。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)
3、“比”的读写:
(1)师介绍:2比3怎么写呢?我们一起来看:2比3记作2∶3(板书:2∶3,先写2,再在中间写上两个小圆点,读作“比”,注意与语文中的“冒号”不同,最后写3。一起来写一写,读一读。)
(2)指导学生写:3比2怎么写呢?谁来写一写?
(3)介绍名称:刚才我们写在中间的两个小圆点(∶)是比号(板书:比号),比号前面的数叫做比的前项,比号后面的数叫做比的后项。(板书:前项
后项)
(4)谁来说一说:2∶3这个比中,比的前项是几?比的后项是几?在3∶2这个比中,2是比的什么?3是比的什么?
4、比是有序概念
(1)同学们看一看,刚才的比的前项是2,这儿的2怎么又是比的后项了呢?
(2)对!颠倒两个数量的位置,就会得出另一个比,它的意义也就不同。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量在比,不可颠倒顺序。
(二)、完成试一试
(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?
(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?
(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)
三、教学例2
(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。
1、想一想,我们怎样求两人的速度?
2、2、学生计算答案,汇报填表。
3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)
4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)
(二)、理解比的意义
1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比与什么有关?两个数的比表示什么呢?(板书:两个数的比两个数相除)
2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)
(三)、认识“比值”、及与“比”的区别:
1、在900∶15这个比中,比的前项是几?后项是几?比的前项除以后项的商是几?我们把比的前项除以后项所得的商叫做比值。算算900∶15这个比的比值是几?
2、想一想,900∶20这个比的比值是多少?这两个比值60、45也就表示什么?
3、你能说出例1中的各个比的比值分别是多少吗?
4、讨论:同学们觉得比与比值的区别在哪里?
(比表示两个数相除的`一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)
(四)、“试一试”
1、完成“试一试”:(学生独立完成,指名板演)
2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)
(五)、比、除法和分数的关系
1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)
相互关系区别
比前项比号(:)后项比值
除法
分数
2、比的后项为什么不能是0?
四、巩固练习
1、完成“练一练”的1、2、3小题。
2、判断题。
(1)3/4只能读作四分之三。()
(2)比的后项不能是零。()
(3)可可的身高是1米,她爸爸的身高是178厘米,可可和她爸爸身高的比是1∶178。()
3、完成练习十三的第3、4题。
4、糖水的甜度
(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)
你知道哪一杯水更甜吗?为什么?
(2)(出示第三杯糖水,标出糖4克,水100克。)
你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?
(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?
5、知识介绍:
同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”
五、总结:
今天我们学习了什么?你们有什么收获吗?还有什么问题吗?
六、布置作业:
P72练习十三的1、2、3、5
板书设计
相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3
果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2
2比3记作2∶3分数形式
《比的意义》教学设计 篇4
教学内容:
课本43-44页以及相关练习
教学目标:
1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。
2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。
教学重点:
理解比的意义以及比与除法、分数的关系
教学难点:
弄清比和比值的联系和区别。
教学准备:
课件,投影。
教学过程:
一、创设情境,生成问题
师:同学们,你们知道我国的第一艘载人飞船叫什么吗?(出示情境图)
问:怎样用算式表示国旗长与宽的关系?(引导学生说出:可以求长是宽的几倍?或求红旗的宽是长的几分之几?)
小结:长和宽的倍数关系可用除法表示。
二、探索交流,解决问题
1、比的意义
(1)两个同类量的比
比较这两个数量之间的关系,除了除法,数学上还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。
不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。
思考:两个数量组成比时,谁比谁,谁在前,谁在后,可以交换位置吗?为什么?(小组交流,汇报补充,深层体会比的意义)
(2)两个不同类量的比
“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?
(算式:42252÷90,依据是速度可以用路程÷时间表示)
对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。
问:路程和时间的比表示什么含义?(生自由发言,理解“路程比时间”表示速度)
(3)归纳比的意义。
通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。)
2、比的写法
(1)阅读课本自学
问题:几比几怎样写?怎样读?
比的各部分名称是什么?
怎样求比值?比值可以怎样表示?
比和比值有什么联系和区别?
(2)小组交流汇报。
3、比、除法和分数的联系
(1)比与除法的关系
问:比的前项相当于什么?后项相当于什么?比值相当于什么?比的后项可以是零吗?为什么?
小组交流汇报。
(2)比与分数的关系。
根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)
三、巩固应用,内化提高
1、完成课本“做一做”。
2、练习十一第1、2题。
四、回顾整理,反思提升
通过这节课的学习,你有什么收获?
课后延伸:
在生活中找一找,在哪里存在比?表示什么含义?
板书设计:
比的意义
15:10=15÷10=3/2
前项比号后项比值