首页 > 教学教案 > 教案大全 > 平行四边形教案优秀4篇正文

《平行四边形教案优秀4篇》

时间:

作为一名人民教师,时常需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么大家知道正规的教案是怎么写的吗?这次为您整理了平行四边形教案优秀4篇,如果能帮助到您,小编的一切努力都是值得的。

平行四边形教案 篇1

教学目标

1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。

2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。

3.培养学生独立思考的习惯。

教学重点与难点

重点:探索平行四边形的识别方法。

难点:理解平行四边形的识别方法与应用。

教学准备

方格纸、直尺、图钉、剪刀。

教学过程

一、提问。

1.平行四边形对边( ),对角( ),对角线( )。

2.( )是平行四边形。

二、探索,概括。

1.探索。

(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。

步骤1:画一线段AB。

步骤2:平移线段AD到BC。

步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。

(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。

根据上述的`过程,能否断定这个四边形是平行四边形?

2.概括。

我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到_BAC=ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:

一组对边平行且相等的四边形是平行四边形。

(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)

三、应用举例。

例4 如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形。

四、巩固练习。

如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。

五、拓展延伸。

在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?

六、看谁做的既快又正确?

七、课堂小结。

这节课你有什么收获?学到了什么?还有什么疑问吗?

八、布置作业。

补充习题

平行四边形教案 篇2

教学目标:

1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。

2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。

3、在学习活动中积累对数学的兴趣,培养交往、合作意识。

教学重点:认识平行四边形。

教学难点:感悟平行四边形的特征。

教学过程:

一、情境导入

同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。

二、自主探究

同学们在生活中见过这样的图形吗?在哪见过?

看,这是教师在生活中见到的四边形,你知道这是什么吗?

课件出示:教材第14页例2图

第一幅图是挂衣服的架子,第二幅图是围起来的`篱笆墙,第三幅图是楼梯的扶手。

你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。

学生动手操作,尝试拼平行四边形,教师巡视指导。

组织交流,展示学生拼图结果,并让学生说说发现了什么?

(它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角)

老师边画平行四边形边指出:像这样的四边形叫做平行四边形。

三、巩固练习

1、“想想做做”第1题。学生独立完成,分小组讨论, 汇报。

2、“想想做做”第2题。组织学生想一想,再围一围。

3、“想想做做”第3题,学生在书上描一描,教师巡视检查。

4、“想想做做”第4题,学生动手完成。

5. “想想做做”第5题,学生在家长的帮助下完成。

三、全课总结

提问:今天这节课你有什么收获?

课后反思:文 章

平行四边形教案 篇3

教学

目标综合运用平行四边形的性质和四边形是平行四边形的条件解决问题

重点

难点平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用。

导学过程教师复备

(学生笔记)

复习回顾

1.平行四边形有哪些性质?

2.判别四边形是平行四边形的条件有哪些?

3.平行四边形的性质与条件的区别?

例题精讲

例1、如图,在□ABCD中,点E、F分别在AB、CD上,AE=CF.四边形DEBF是平行四边形吗?为什么?

例2、如图,□ABCD的对角线相交于点O,直线EF过点O分别交BC、AD于点E、F,G、H分别为OB、OD的中点,四边形GEHF是平行四边形吗?为什么?

反馈练习

1.如图,在□ABCD中,AB=5,AD=8,∠A、∠D的'角平分线分别交BC于E、F,则EF=__________(在右边写出过程)

2.如图,在□ABCD中,过其对角线的交点O,引一条直线交BC于E,交AD于F,若AB=2.4CM,BC=4CM,OE=1.1CM。则四边形CDFE的周长为多少?

3.如图,在□ABCD中,点E、F在对角线BD上,且BE=DF.四边形AECF是平行四边形吗?请说明你的理由。

八年级数学教案:《平行四边形》 篇4

一、教学目标:

1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。

2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。

3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。

教学重点:在制作中发现平行四边形的基本特征。

教学难点:引导学生发现平行四边形的特征。

二、教学过程:

(一)创设情境,设疑激趣

1.师:同学们每天都要经过校门进入校园,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?

生:能

师:是什么平面图形,谁能上来指一指。

生:平行四边形

根据回答:教师板书:平行四边形

(二)引导探究,自主建构

师:同学们再看,这里面有没有平行四边形?(出示扩缩尺、升降机图片)

生:谁能上来指一指?

师:那同学们想一下什么样的图形是平行四边形呢?请看大屏幕

(大屏幕出示平行四边形定义:两组对边分别平行的四边形叫做平行四边形)

师:谁能找一下这句话里最重要的几个词,并解释一下?

生:四边形

师:什么样的图形是四边形?

生:由四条边围成的图形

师:还有哪几个词?

生:两组对边分别平行

师:你能上来一边用手指着一边给大家解释一下这句话吗?

生:能

师:除了两组对边分别平行,两组对边的长度有什么关系呢?拿出刚刚发给你的平行四边形,量一量四条边的长度,你发现了什么?

生:两组对边相等

师:平行四边形的两组对边平行且相等,那么平行四边形的对角有什么特点呢?继续拿出发给你的平行四边形,把两组对角像老师这样折一折,你发现了什么?

生:两组对角相等

师:刚才同学们说的都非常好,现在带着你的理解在研究单的方格纸上画一个平行四边形

生画图,师巡视指导。

研究单

在下面的方格纸上画一个平行四边形

师:(选几个学生画的平行四边形粘到黑板上)孩子们,画好了吗?

生:画好了

师:画好了,请看黑板,思考老师这样一个问题:为什么同学们画的平行四边形都不一样大呢?

随意生怎么说,只要表达出底和高的意思就行

师:介绍平行四边形的底和高

注:这个平行四边形的高学生画

注:老师画第二种情况

师:请同学们继续拿出研究单,完成研究二。不用写,能思考出答案就行

研究二:总结正方形、长方形和平行四边形的特征。

正方形

长方形

平行四边形

师:孩子们,现在小组交流一下你的想法

生生交流,师巡视指导

师:好了,小组交流到此结束,哪个小组愿意全班交流一下你们的想法。

生:......

师:同学们请继续看,老师这里有一个平行四边形框架,(来回拉动平行四边形),你发现平行四边形有什么性质?

生:具有不稳定性

师:(继续拉动平行四边形,拉成长方形),说明长方形和平行四边形是什么关系?

生:长方形是特殊的平行四边形。

师:同学们,我们已经学过正方形、长方形的关系,谁来说一说?

生:正方形是特殊的长方形(师出示长方 形圈正方形的圈)

师:利用平行四边形的特征,如果把平行四边形也圈进来,应该怎样圈?

生:圈在最外面

(三)自主反思

通过本节课的学习,你收获了什么?