《圆的面积教案【优秀9篇】》
在教学工作者实际的教学活动中,总不可避免地需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么大家知道正规的教案是怎么写的吗?这次帅气的小编为您整理了圆的面积教案【优秀9篇】,如果对您有一些参考与帮助,请分享给最好的朋友。
小学数学《圆的面积》教案 篇1
教学内容:
圆的面积。
教学目标:
1、 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。
3、 渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
学情分析:
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
学法指导:
教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。
教具准备:
多媒体课件,圆片。
学具准备:
把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
教学设计:
一、复习旧知,导入新课
1、 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?( 2πr)周长的一半怎样表示?(πr)
2、 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)
3.课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。
3、 提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)
这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)
二、动手操作,探索新知
1、 回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这 三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?
那么同学们想一想,圆可能转化为什么平面图形来计算呢?
2、 推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr × r
S=πr
师小结公式 S=πr,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
3、 利用公式计算。
(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)
(2)出示例3,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第95页做一做的第1题。
(4)看书质疑。
三、运用新知,解决问题
1、 求下面各圆的面积,只列式不计算。(CAI课件出示)
2、 测量一个圆形实物的直径,计算它的周长及面积。
3、 课件演示: 用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业
1、 第97页的第3题和第4题。
2、 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物 直径(厘米) 半径(厘米) 面积(平方厘米)
板书设计:
圆的面积
长方形的面积=长×宽
圆的面积=周长的一半×半径
S=πr×r
S=πr
《圆的面积》教学设计 篇2
目标预设:
1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。
教学过程:
一、引导估计,初步感知。
1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?
2、估计圆面积大小与半径的关系。
师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?
二、动手操作,共同探索。
1、引发转化,形成方案。
(1)我们如何推导三角形,平行四边形,梯形的面积公式的?
(2)准备如何去推导圆的面积?
2、动手操作,共同探究
(1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?
(2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。
(3)比较:与刚才老师拼成的图形有何不同?
(4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?
如果一直这样分下去,拼成的图形会怎么样?
3、引导比较,推导公式。
圆与拼成的长方形之间有何联系?
引导学生从长方形的面积,长宽三个角度去思考。
根据学生回答,相机板书。
长方形的面积=长×宽
↓↓↓
圆的面积=∏rr
=∏r2
追问:课始我们的估算正确吗?
求圆的面积一般需要知道什么条件?
三、应用公式,解决问题
1、基本训练,练练应用公式,求圆的面积。
2、解决问题
(1)出示例9,引导学生理解题意。
要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?
(2)学生计算
(3)交流,突出5平方的计算
四、巩固练习
1、练习十九1求课始出示的光盘的面积
2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?
五、这节课你有什么收获?你认为重点的
地方有哪些?
引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)
六、课堂作业
补充习题51页2、3、4题
拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。
圆的面积是多少平方厘米?
反思:
1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。
2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。
3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。
《圆的面积》教学设计 篇3
教学内容:
义务教育课程标准实验教科书第十一册P67-68。
教学目标:
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积。教学难点:理解圆的面积计算公式的推导。
学具准备:
相应课件;圆的面积演示教具
教学过程:
一、创设情境,导入新课
出示教材67页的情境图。
师:同学们,请看上面的这幅图,从图中你发现了什么信息?
生1:我发现图上有5个工人在铺草坪。
生2:我发现花坛是个圆形。
师:哦,是个圆形。还有没有?请仔细观察。
生:我发现一个工人叔叔提出了一个问题。
师:这个问题是什么?
生:这个工人叔叔说“这个圆形草坪的占地面积是多少平方米?”
师:你们能帮他解决这个问题吗?
师:求圆形草坪的占地面积也就是求圆的什么?
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
二、游戏激趣,理解圆面积的概念
师:同学们,我们先来玩个小小游戏,大家说好不好?游戏规则是这样的:选出一名男同学和一名女同学,给圆涂上颜色,比一比,谁涂得快。(涂完后,师:同学们,你们有什么话要说吗?)
生:这个游戏不公平?男同学涂的圆大,女同学涂的圆小。师:圆所占平面的大小叫做圆的面积
(板书:圆所占平面的大小叫做圆的面积)
师:现在大家知道男同学为什么涂得慢了吗?(引导学生说出男同学所涂的圆的面积大)
三、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的发生了变化,但是它们的不变?
②转化后长方形的长相当于圆的,宽相当于圆的?③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为??所以??”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
4、公式运用,巩固新知。
师:现在大家懂得计算圆的面积了吗?我们来试试看。
四、应用公式,解决生活中的实际问题
师:接下来我们运用圆的面积计算公式来解决生活中的实际问题。
师:(出示教材第67页的情境图)这是刚才课前发现的问题。师:这道题你们能自己解决吗?(让学生尝试自己解决问题,并指名板演。再让学生说说是怎样想的,然后教师小结:求圆的面积必须知道什么条件?)[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
五、练习反馈,扩展提高
1、一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?
2、小刚家门前有一棵树,他很想知道这棵树的横截面的面积是多少,但是他又不想锯掉,你们有什么办法帮他吗?
六、全课总结
同学们,这节课我们学习了哪些知识?你有什么收获?
七、板书设计
圆的面积
圆所占平面的大小叫做圆的面积
长方形面积=长×宽
=半径
S=πr×r
=πr2
《圆面积公式推导》教学设计 篇4
教学设想:
本节课根据新课程的理念和要求,通过创设问题情境,小组合作交流,学法迁移等形式,让学生在动手、动口、动脑中主动探究圆面积公式推导的多种方法。并借助学生的想像,发展学生的空间观念。然后引导学生探究,得出圆面积的两种推导方法,旨在拓展学生的思维。在练习设计时,选用了一些联系生活实际的问题,在于培养学生解决实际问题的能力,使教学内容生活化。
教学过程:
一、创设情景,明确目标
师:(多媒体课件出示照片)同学们,这个地方你们熟悉吗?这是我们校门口内的一个圆形大花坛,学校打算要给这个花坛铺上草坪,需要多少草皮呢?这实际上要我们解决什么数学问题?
生:圆的面积
(板书:圆的面积)
师:今天这节课,我们就来讨论怎样求圆的面积。
二、利用迁移,探究方法
师:下面请同学们回忆一下,我们以前学过哪些平面图形的面积计算?(学生答师板书)
师:它们的面积公式分别是怎样得到的?(学生答略)
师:除了长方形用“面积单位”去量之外,其它几个图形面积推导方法有什么共同特点?
生:都是用转化的方法推导出来的。
师:今天我们要学习的圆形与以上几种图形有什么明显的区别?
生:圆形是由曲线围成的。
师:能不能也用“面积单位”去量呢?
生:不能。
师:那我们该用什么方法解决呢?
生:也可以用转化的方法,把圆转化成我们熟悉的图形。
师:那好,下面请同学们打开课本,看看书上是用什么方法得出圆面积公式的。
生(看书后),师指定一名学生借助教具介绍书上的推导方法,(师板书)从而得出圆面积的计算公式。
三、借助想像,感悟“极限”
师:同学们,你们听了他的介绍后,心里还有什么疑问吗?
生:这个拼成的图形好像真的是长方形吗?
生:既然形状是近似的,那这个图形的计算结果也是近似的。这里的计算公式也不能用等号表示了。
师:那我们得想个办法,把它变直,谁有办法?
生:等分的份数多一点?
师:究竟能分多少份?16份?32份?64份?
生:等分的份数越多,拼成的图形就越接近于长方形。
师:请同学们闭上眼睛想像一下,如果一直这样不断无限地等分下去,这个近似的长方形将会怎样?
生:拼成的图形就真的变成长方形,因为边越来越直了。
四、小组合作,拓展思路
师:同学们,刚才我们发现书上果然利用了转化方法,把我们不熟悉的图形转化成熟悉的长方形,推导出圆的面积公式,那你们猜想一下,还能把圆转化成哪些图形?
(学生回答,师板书)
师:下面,请你们每四人组成一小组,选择其中的一种,拿出事先等分好的圆片,一边讨论,一边操作,写出推导过程。如果你们不选择以上的方法,想出与众不同的方法更好。
上来汇报的小组派出两位代表,一位拿出拼好的图形在投影仪上介绍推导过程,另一位在黑板上写出推导过程。
师:谁还有与众不同的方法吗?
生:我们知道,如果把这个近似长方形无限等分下去,确实就是长方形,其中1份可以看作是三角形,只要算出这1份三角形的面积再乘以份数就是圆的面积了。
师:你真聪明,能不能以16等份为例写出推导过程呢?
(生写出推导过程)
师:刚才一小块可以看面是三角形,那么,如果等分的份数少一点呢,再少一点呢?……因而整个圆其实可以看作什么呢?
生:一个大三角形。
师:真棒,这个大三角形的底就是什么?高就是什么?
生:这个大三角形的底就是圆的周长,高就是圆的半径。
师:同学们真厉害,能不能写出推导过程呢?
(生写出推导过程)
师:大家真了不起,竟然想出了那么多好办法。学习就应该这样,要敢于向书本挑战,要善于探究。
五、联系生活,应用知识
师:现在你们会解决校门口花坛的草坪面积了吗?
生:条件不够,要知道半径是多少?
师:好,半径是5米。
学生计算,师提醒学生注意计算时r2不要算成2×r
师:直径是10米行吗?(指名汇报)
师:不管给你们什么条件,要求圆面积,只要先求出什么就可以了。
生:半径
师出示深化题,学生练习
1.用一根绳子把一只羊拴在一片草地中的木桩上,绳长3米,这只羊吃到草的最大面积是多少?
2.半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?
3.一个圆的直径和正方形的边长相等,圆和正方形哪个面积大?为什么?
4.某县政府部门在规划一条圆形的环城路,要计算这条路所围的面积有多大,你有什么办法?
《圆的面积》教学设计 篇5
教学内容:人教版六数上第66页、67页
教学目标:
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
2、经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。
3、培养学生合作探究的意思,感悟数学知识的内在联系。教学重点、难点:1.理解圆面积公式的推导过程。
2、会正确计算圆的面积。
教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆
教学过程:
(课前游戏)
猜谜:前面有一片草地(打一植物)
草地上来了一群羊(打一水果)
草地上有一群羊,突然来了一群狼(打一水果)
师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。
一、导入:
师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)
二、认识圆的面积:
1、师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。
师:圆表面的大小就叫做圆的面积。
2、师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?
生:一个圆面积大,一个圆面积小。
师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。
生:半径或者直径越长,圆的面积就越大。
师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。
三、观察与尝试猜测:
1、(出示正方形与圆的课件)
师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多少呢?
生:大正方形的面积是4r,小正方形的面积是2r。
2、师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?
生:圆的面积比大正方形的面积小,比小正方形的面积大。
师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?
生:3r。
师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。
四、小组合作、拼摆。
1、师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?
生:底*高。S=ah。
师:还记得平行四边形的面积计算公式是如何推导出来的吗?
是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢?生:三角形和梯形转化成平行四边形再推导的。
师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢?
2、师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?
生:三角形或者等腰三角形。
师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!
提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。
学生开始小组合作。
3、汇报合作结果。
师:你们都拼成了什么样的图形?上台来展示一下吧。
生分组上台展示。
要求学生汇报自己是怎样拼的,拼成了一个什么图形。
师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?
生:分得越多,越接近长方形。
五、面积计算公式推导:
1、师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!
2、师:找到答案了吗?
生:长是πr,宽是r。
师:长方形的面积呢?请同学们在练习本上写一写。
那圆的面积呢?也写一写,读一读吧。
学生汇报。师板书。
3、师:这个公式与我们之前猜测的做一下比较,你发现了什么?
4、师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?
生:半径。
师:知道什么也可以求出圆的面积呢?
生:直径、周长。
师:下面我们就来试一试吧!
六、巩固练习。
1、平方的口算练习。
123456789102030222222222222
2、马的活动范围题:半径为2米,求周长。学生在练习本上完成。
3、圆形花坛的直径是20米,求圆形花坛的占地面积。
学生先汇报思路,再在练习本上完成。
4、树干的周长是125.6米,求树干的横截面积是多少?
学生先汇报思路,再在练习本上完成。
七、总结:
师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?
《圆的面积》教学设计 篇6
教学理念:
本课时是在学生掌握了直线图形的面积计算的基础上教学的,主要是对圆的面积计算公式进行推导,正确计算圆的面积。教学圆的面积时,教材首先通过圆形草坪的实际情境提出圆面积的概念,使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”。
接着教材启发学生寻找解决问题的思路和方法,回忆以前在研究多边行的面积时,主要采用了割补、拼组等方法,将多边行的面积转化成更熟悉和更简单的图形来解决,那么,在这里也可以用转化方法,让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆的面积转化为熟悉的直线图形的面积来计算,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单,未知转化为已知、抽象转化为具体等方式来处理的。
教学目标:
1、通过动手操作、认真观察,让学生经历圆面积计算公式的推导过程,理解掌握圆面积公式,并能正确计算圆的面积。
2、学生能综合运用所学的知识解决有关的问题,培养学生的应用意识。
3、利用已有知识迁移,类推,使学生感受数学知识间的联系与区别。培养学生的观察、分析、质疑、概括的能力,发展学生的空间观念。
4、通过学生小组合作交流,互相学习,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。
教学重点:
运用圆的面积计算公式解决实际问题。
教学难点:
理解把圆转化为长方形推导出计算公式的过程。
教学准备:
多媒体课件及圆的分解教具,学生准备圆纸片和圆形物品。
教学过程:
一、创设问题情境,激发学生学习兴趣。
1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。
2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的?(电脑课件演示)
二、合作交流,探究新知。
1、出示圆:
(1)让学生说出圆周长的概念,并指出来。
(2)想一想:圆的面积指什么?让学生动手摸一摸。
(揭示:圆所占平面的大小叫做圆的面积。)
(3)对比圆的周长和面积,让学生感受他们的区别。
同时引出课题——圆的面积。
[设计意图:通过学生动手摸一摸,使学生能够大胆地概括圆的面积,为开展学生想象力提供了广阔的空间。另外,让学生比较圆的周长和面积,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。]
2、推导圆面积的计算公式。
(1)学生观察书本P67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢?
(2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化?
[设计意图:通过提问,让学生对圆的面积公式的推导先进行预测,引导学生大胆寻找求圆面积的方法,激发学生的创作灵感,提高学生的求知欲望与探究兴趣。]
(3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。
①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好?
②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点?
[设计意图:给学生充分的时间动手操作,放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的。教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,让学生在合作交流中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。]
③当圆转化成近似长方形时,你们发现它们之间有什么联系?
课件演示:
师:现在,老师把圆平均分成16份,可以拼出这个近似长方形的图。想象一下,如果平均分成64份、126份??又会是什么情形?
④小结:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。
[设计意图:通过电脑课件演示,生动形象地展示了化圆为方,化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地认识和理解圆转化成长方形的演变过程。]
(4)以拼成的近似长方形为例,认真观看课件,师生共同推导圆的面积计算公式。
①引导:当圆转化成近似的长方形后,圆的面积与长方形面积有什么关系?并且指出拼出来的长方形的长和宽。
②长方形的长和宽与圆的周长、半径有什么关系?如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,推导出所要研究的圆的面积公式?
③学生讨论交流:长方形的'长是圆周长的一半,即a=C/2=2πr/2=πr,宽是圆的半径,即b=r。教师板书如下:
(5)小结:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式就是。同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!
(6)学生打开书本P68补充圆面积的计算公式的推导过程。思考:计算圆的面积需要什么条件?
[设计意图:在推导过程中给学生创设讨论交流的学习机会,通过观看电脑课件的演示,引导式提问、试写推导过程等不同形式,来调动学生参与学习的积极性,发挥学生的主体作用,培养了学生操作、观察、分析、概括的能力。最后进行小结,巩固学生对圆面积计算公式的认识。另外通过提出问题,强调学生计算圆面积时需要的条件。]
三、实践运用,巩固知识。
1、已知圆的半径,求圆的面积。
判断对错:已知一个圆形花坛的半径是5米,它的面积是多少平方米?
=3.14×5×2=31.4(米)
(学生先独立思考,再汇报交流,共同修改。)
强调:半径的平方是指两个半径相乘。
2、已知圆的直径,求圆的面积。(教学例1)
①师:把第一题的“半径是5米”改成“直径是20米”,那么这个圆形花坛的面积又怎样算呢?(小组合作交流,探讨计算方法。)
②学生汇报计算方法,要强调首先算什么?
③打开书本P68补充例1。
3、已知圆的周长,求圆的面积。(书本P70练习十六第3题)
小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?
①引导提问:要求树干的横截面积,必须先求出树干的什么?你打算怎样求树干的半径呢?
②根据圆的周长公式,师生间推导出求半径的计算方法。
③学生独立完成,教师巡查给于适当的指导。另外请两位学生上台板演,共同订正,并且指出计算中容易出现错误的地方。
4、一个圆形溜冰场,半径30米。
(1)这个溜冰场的面积是多少平方米?
(2)沿着溜冰场的四周围上栏杆,栏杆长多少米?
提问:知道圆的半径用什么方法求圆的面积?第(2)个问题求栏杆的长度也就是求这个圆形溜冰场的什么?用什么方法求圆的周长?
[设计意图:学生已经推导出圆面积的计算公式,以上的四道题的作用是巩固圆面积计算公式的运用,使学生对圆面积的计算方法有更深刻的理解。在练习时,大胆放手让学生进行计算,同桌间合作探讨,经过学生多次尝试解答,使他们的观察力、动手操作能力、想象力都能够得到进一步的发展,从而促进了理论与实践相结合,培养了学生灵活运用所学知识解决实际问题的能力。其中第3题通过周长求面积的计算和第4题知道圆的半径求圆的面积和周长,让学生体会到圆的周长和面积有着紧密的联系和根本的区别,使新旧知识有更好的连接,并且让学生感受到几何图形计算的灵活性。]
四、总结评价,拓展延伸。
1、今天我们学了什么知识?一起闭上眼睛回忆我们整节课的学习过程,你有什么感受啊?在计算圆的面积时有什么地方值得注意的?
2、在生活中还有很多关于圆面积的知识,老师出一个题目给同学们课后进行思考:有一个圆形花坛,中间建了一个圆形的喷水池,其他地方是草坪,求草坪的面积是多少?
小学数学《圆的面积》教案 篇7
教学目标
1、理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2、能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4、初步培养学生抽象的逻辑思维能力。
教学重点
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程
一、复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二、新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三、新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)
(2)底面积:3.14×2×2=12.56(平方分米)
(3)表面积:56.52+12.56=81.64(平方分米)
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四、反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五、拓展练习
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六、巩固练习。
1计算下面图形的表面积(单位:厘米)(略)
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
《圆面积公式推导》教学设计 篇8
教学内容:
义务教育课程标准实验教科书第十一册P67-68。
教学目标:
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积。教学难点:理解圆的面积计算公式的推导。
学具准备:
相应课件;圆的面积演示教具
教学过程:
一、创设情境,导入新课
出示教材67页的情境图。
师:同学们,请看上面的这幅图,从图中你发现了什么信息?
生1:我发现图上有5个工人在铺草坪。
生2:我发现花坛是个圆形。
师:哦,是个圆形。还有没有?请仔细观察。
生:我发现一个工人叔叔提出了一个问题。
师:这个问题是什么?
生:这个工人叔叔说“这个圆形草坪的占地面积是多少平方米?”
师:你们能帮他解决这个问题吗?
师:求圆形草坪的占地面积也就是求圆的什么?
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
二、游戏激趣,理解圆面积的概念
师:同学们,我们先来玩个小小游戏,大家说好不好?游戏规则是这样的:选出一名男同学和一名女同学,给圆涂上颜色,比一比,谁涂得快。(涂完后,师:同学们,你们有什么话要说吗?)
生:这个游戏不公平?男同学涂的圆大,女同学涂的圆小。
师:圆所占平面的大小叫做圆的面积
(板书:圆所占平面的大小叫做圆的面积)
师:现在大家知道男同学为什么涂得慢了吗?(引导学生说出男同学所涂的圆的面积大)
三、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的发生了变化,但是它们的不变?
②转化后长方形的长相当于圆的,宽相当于圆的?
③你能从计算长方形的面积推导出计算圆的面积的公式吗?
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
4、公式运用,巩固新知。
师:现在大家懂得计算圆的面积了吗?我们来试试看。
四、应用公式,解决生活中的实际问题
师:接下来我们运用圆的面积计算公式来解决生活中的实际问题。
师:(出示教材第67页的情境图)这是刚才课前发现的问题。师:这道题你们能自己解决吗?(让学生尝试自己解决问题,并指名板演。再让学生说说是怎样想的,然后教师小结:求圆的面积必须知道什么条件?)[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
五、练习反馈,扩展提高
1、一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?
2、小刚家门前有一棵树,他很想知道这棵树的横截面的面积是多少,但是他又不想锯掉,你们有什么办法帮他吗?
六、全课总结
同学们,这节课我们学习了哪些知识?你有什么收获?
小学数学《圆的面积》教案 篇9
教学目标
1、使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;
2、培养学生动手操作的能力,启发思维,开阔思路;
3、渗透初步的辩证唯物主义思想。
教学重点和难点
圆面积公式的推导方法。
教学过程设计
(一)复习准备
我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?
已知半径,圆周长的一半怎么求?
(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)
这节课我们一起来学习圆的面积怎么计算。
(板书课题:圆的面积)
(二)学习新课
1、我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。
展示曲变直的变化图。
2、动手操作学具,推导圆面积公式。
为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。
思考:
(1)你摆的是什么图形?
(2)所摆的图形面积与圆面积有什么关系?
(3)图形的各部分相当于圆的什么?
(4)你如何推导出圆的面积?
(学生开始动手摆,小组讨论。)
指名发言。(在幻灯前边说边摆。)
①拼出长方形,学生叙述,老师板书:
②还能不能拼出其它图形?
学生可以拼出:
刚才,我们用不同思路都能推导出圆面积的公式是:S=r。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。
例1 一个圆的半径是4厘米,它的面积是多少平方厘米?
S=r=3.1442=3.1416=50.24(平方厘米)
答:它的面积是50.24平方厘米。
想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?