首页 > 教学教案 > 教案大全 > 《平行四边形的面积》教案(7篇)正文

《《平行四边形的面积》教案(7篇)》

时间:

作为一位兢兢业业的人民教师,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么什么样的教案才是好的呢?这次帅气的小编为您整理了《平行四边形的面积》教案(7篇),希望大家可以喜欢并分享出去。

平行四边形的面积教学设计 篇1

教学内容:

人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》P79-81

教学目标:

1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:掌握平行四边的面积计算公式,并能正确运用。

教学难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

教学方法:动手操作、小组讨论、启发、演示等教学方法。

教学准备:

1. 平行四边形卡纸

要求:底为6厘米,高为4厘米,最小的内角为45度,形状为:

2. 剪刀、三角尺、文具(铅笔、橡皮等)

3. 板贴

文字为:“平行四边形的面积”;

“长方形的面积=长×宽” “平行四边形的面积=底×高” “S=ah”;

“平行四边形的面积=相邻两边的乘积”

教学过程:

教学

环节

教师活动及教师语言

学生活动及学生语言

课件设计

复习导入

探索新知

巩固练习

小结

师:同学们,你们好!很高兴又能和大家一起探讨有趣的数学问题了!

那么今天聪聪将带我们去什么地方探讨怎样的数学问题呢?(课件:出示课本P79主题图)

师:仔细观察找一找图中有哪些学过的图形?

师:好,下面谁来说一说你找到了哪些学过的图形?

(教师随着学生的回答点击课件相应的画面)

师:你们知道这两个花坛中哪个面积大吗?

师:那么,谁的想法正确呢?我们一起来验证一下,好吗?

请大家看屏幕。(点击课件,边点击边说)

师:我们把这两个花坛画到纸上,用数方格的方法数数看。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。数一数,它们的面积各是多少?

师:下面请同学们打开书第80页,先独立思考并数一数,然后再和同桌互相交流。

师:好,谁来说一说你是怎么数的。

(师随生说点击课件)

师: 哦,你们数的结果是都是24平方米,说明……

也就是……

(一生举手,老师示意其发言)

师:这个问题提得很好,那平行四边形的面积公式是什么呢?这就是我们这节课要研究的内容。

(出示课题)

师:下面请同学们继续观察这两个图形,并完成课本第80页下方的表格。完成后想一想,除了面积相等外,它们还有什么关系呢?

师:谁来汇报一下你填的结果?

(师随学生汇报点击课件,补充表格)

师:通过这个表格,你们有什么发现呢?

师:大家同意吗?

那谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法?

(教师板贴:平行四边形的面积=相邻两边的乘积)

师:那这个猜想对不对呢?请大家想办法验证验证。

师:验证完了吗?

师:这个猜想对吗?

师:那谁来说一说你是怎样验证的?

师:哦,我听明白了。你是这样验证的。(点击课件,演示过程)你画了这样的两个平行四边形,它们的底边相等,与底边相邻的边也相等。那大家看它们的面积相等吗?

(点击课件)那这样呢,它们的面积相等吗?

(点击课件)这样呢?

师:同学们,你们也是这样验证的吗?

师:看来,这个猜想(指黑板)不正确(在板贴公式的等号上画上斜杠)。那谁还有不同的猜想呢?

(教师板贴)

师:能说说你的理由吗?

(师在刚才贴的上面贴上长方形面积公式)

师:那这个猜想到底对不对呢(在平行四边形面积公式的等号上方画上问号)?请大家借助手中的平行四边形卡片、剪刀等学具想办法验证验证。

师:验证完了吗?

师:谁愿意把你的验证方法说给大家听听?

师:你为什么想到这样转化?

师:那你接着说说是怎样把平行四边形转化成长方形的。

师:哦,这位同学是这样(点击课件)沿着平行四边形的一条高剪开,把平行四边形转化成一个长方形。那谁能说说,平行四边形转化成长方形后,什么变了?什么没变?

师:非常正确!转化后,长方形的长与宽分别与平行四边形的底和高有什么关系?(师随生回答在黑板上的公式间标上对等关系。)

师:那现在你们知道平行四边形的面积怎样计算吗?

师:不错,这样我们就验证了平行四边形的面积公式=底×高(指黑板,擦去等号上的“?”号)

师:刚才这位同学是把平行四边形转化成长方形来验证的。不错,谁还有不同的方法?

(师随生说点击课件,依次呈现转化图中右侧的转化过程)

师:大家听明白了吗?

师:他们都把平行四边形沿着一条高剪开(点击课件),将平行四边形转化成一个长方形再进行验证的。

师:(小结)(点击课件)看来,沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。

刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,大家都值得表扬。

师:下面请大家想一想,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形底边上的高,平行四边形的面积公式用字母怎样表示呢?

(师出示板贴“S=ah”)

师:知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。(出示例1)这道题是书上81页的例1,请大家做一做。

谁来说一说你是怎么做的?

师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?

师:不错,只要知道它的一组底和高就能求面积了。

师:那我们接着再来看一道题(点击课件)你能求出下面平行四边形的面积吗?这就是课本第82页的第2题。请大家在书上完成。

师:谁来说一说你是怎样求的?

(师随生说点击课件。)

师:大家同意吗?

师:下面我们继续看这两个平行四边形,(出示书P83(5)题目),仔细观察,想一想它们的面积相等吗?算一算它们的面积各是多少?这就是书上83页的第5题,请大家先独立思考,再两人一组讨论、交流自己的想法。

师:讨论完了吗?谁来说一说你是怎么解决这一问题的? (根据学生回答出示课件)

师:真不错!老师也是这么想的!可以说等底等高的平行四边形的面积相等,大家同意这种说法吗?

师:运用这节课我们所学的知识,我们还可以解决生活中的一些实际问题。请看屏幕。(点击课件)这是我们书上82页的第4题,请同学们一起完成吧。

师:谁来说一说你是怎样解决这一问题的?

师:你完成得很好,在解决问题时也注意了面积单位的变化!

师:下面请大家回顾一下我们这节课的内容,想一想,通过这节课的学习,你有哪些收获?

师:看来,大家的收获真不少。只要大家勤动手,勤思考,就一定会学到更多的数学知识,也会变得越来越聪明!

好,今天这节课我们就上到这里,同学们再见!

生(齐):老师好!

学生观察、思考。

生1:斑马线上有长方形,地砖上有正方形。

生2:房顶上有三角形,左边的花坛是长方形的,右边的花坛是平行四边形的。

生3:车窗是梯形的。

生4:车轮是圆形的。

生1抢先站起来:长方形的面积大;

生2起来反驳:平行四边形的面积大;

生3:我认为长方形和平行四边形的面积一样大。

学生独立思考后,互相交流。

生1:长方形每行有6格,一共有4行,面积就是6×4=24(平方米);

生2:平行四边形整格的有20个,半格的有8个。不满一格的按半格计算,平行四边形的面积是

20+8÷2 = 24(平方米)。

生(齐):平行四边形的面积和长方形的面积同样大。

生(齐):两个花坛的面积同样大。

生2:我觉得长方形的面积不用这样数。我们已经学过了长方形的面积计算公式,只要数出长和宽,直接计算就可以了。

生3(站起来说):老师,我有一个问题,平行四边形的面积是不是也有计算公式呢,如果有就方便了。

学生填写表格,并思考。

生1:平行四边形的底和长方形的长都是6米;平行四边形的高和长方形的宽都是4米,长方形的面积和平行四边形的面积都是24平方米。

生2:平行四边形的底与长方形的长相等,高与长方形的宽相等,它们的面积也是相等的。

生(齐):同意!

生1:长方形的面积公式是长乘宽,也就是相邻两边的乘积,所以我认为平行四边形的面积公式也应该是相邻两边的乘积。

生集体验证。

生(齐):验证完了。

生(齐):不对。

生1(举起练习本):我画了这样两个平行四边形(如右图),它们的底边相等,与底边相邻的边也相等。如果面积公式是相邻两边相乘,面积应该是相等的,但是一眼就能看出它们的面积并不相等。所以这个猜想不对。

生(齐):不相等。

生(齐):不相等。

生(齐):不相等。

生(齐):是的。。

生2:我认为平行四边形的面积公式应该等于它的底乘高。

生2:因为我们刚才填表格时,发现这个长方形的长和这个平行四边形的底相等,长方形的宽又和这个平行四边形的高相等,它们的面积也相等。而长方形的面积等于长乘宽,所以我想平行四边形的面积等于底乘高。

学生分组操作,教师巡视。

生(齐):验证完了。

生1:因为我们刚才发现底和长方形的长相等、高和长方形的宽相等的平行四边形面积和这个长方形的面积相等。我就想到了把平行四边形转化成长方形。

生1(从投影仪演示):我先从平行四边形的一个顶点画了一条高,这样剪出了一个直角三角形和一个直角梯形,把平行四边形转化成了长方形。

生2:形状变了,面积没有变。

生3:转化后的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

生1:知道。因为长方形的长与原来平行四边形的底相等,宽与原来平行四边形的高相等,而长方形的面积=长×宽,所以,平行四边形的面积=底×高。

生2:我也同意平行四边形的面积等于底乘高。

生1(投影以上演示):我的方法和××同学的差不多。但我是这样验证的:我画出了平行四边形的一条高,沿这条高把它剪成两个直角梯形,把一个直角梯形移到另一边,正好拼成一个长方形。

生(齐):听明白了。

生(齐):S等于ah。

生1:平行四边形的面积计算公式是底乘高,这个平行四边形的底是6米,高是4米,所以它的面积就是6×4=24平方米。

生1:平行四边形的一组底和高。

学生独立完成。

生1:我先画出平行四边形一边上的高,再量出底和高的长度,最后应用公式进行计算。结果是××平方厘米和××平方厘米。

生(齐):同意!

学生先独立思考,在课堂练习本上计算,再两人一组讨论、交流。

生1:这两个平行四边形的底相等,高也相等,因此它们的面积肯定相等。算式是1.4乘2.5等于3.5平方厘米。

生(齐):同意!

学生独立在课堂练习本上练习。

生1:我先求出麦田的面积为250×84=21000(平方米)=2.1(公顷),再求14.7÷2.1=7(吨)

生1:我们用转化的方法推导出平行四边形的面积公式。

生2:我知道了平行四边形的面积公式是S=ah 。

生3:我会用平行四边形的面积公式解决一些实际问题。

生4:我知道了等底等高的平行四边形面积相等。

生(齐):再见!

平行四边形的面积教学设计 篇2

[教学目标]

1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

[教学重点、难点]

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

[教具、学具准备]

多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。

[教学过程]

一、复习旧知,导入新课。

1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。

2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。

师板书:长方形的。面积=长×宽

师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。

二、动手实践,探究发现。

1、剪拼图形,渗透转化。

(1)小组研究

老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。

(2)汇报结果

第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。

板节课题:平行四边形面积计算

2、动手实践,探究发现。

(1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?

(2)学生重新剪拼,互相探讨。

(3)汇报讨论结果。

师板书:平行四边形的面积=底×高

(4)让学生齐读:平行四边形的面积等于底乘以高。

(5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?

(必须知道平行四边形的底和高)

课件展示讨论题:平行四边形的底和高是否相对应。

(6)总结平行四边形面积的字母代表公式:S=ah(师板书S=ah)

(7)比较研究方法。

三、分层训练,理解内化。

课件显示练习题

第一层:基本练习

第二层:综合练习

第三层:扩展练习

下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

四、课堂小结,巩固新知

小结:这节课我们学习了什么?你学会了什么?

平行四边形的面积教学设计 篇3

教学目标:

1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。

2、通过操作、分析讨论等活动,培养学生

动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。

3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。

4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。

教学重点:

使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。

教学难点:

能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。

教学过程:

一、情景引入

1、联系实际选择建房用地。

(1)利用绕城高速路建设中房屋拆迁转移的事例提问:小明家的房屋也被拆迁转移了,政府根据有关规定给它们一定的经济赔偿和一块新房建设用地。新房建设用地是在同一地段的两块地中选择(如图)。你会选择哪一块,为什么?

(2)联系刚才的选择地的情况,让学生比较两块地的大小情况。

让学生说说自己的比较的方法,如“数格子”,“剪拼比”等方法,同时提出:在剪拼比时你还能发现什么?

(3)引入课题:通过比较,我们发现两块地一样大。但在现实生活中我们能不能把两块地直接进行剪拼,比较呢?那还可以用什么方法来比较两块地的大小情况呢……

二、探究新知

1、面积计算公式的推导:

引入:在刚才的比较中,我们发现可以把平行四边形转化成长方形。那能不能把任何一个平行四边形都转化成长方形呢?

(1)讲解相关的要求。明确小组研究要求。

(2)操作验证。巡视,个别指导。

(3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。

问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法)

(4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。

引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)

教师逐步点击交互,得出:

长方形的面积=长×宽

平行四边形的面积=底×高

(5)用字母表示面积计算公式。

(6)小结。(明确转化的方法。)

2、面积计算公式的应用:

(1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。

讨论后,给出底和高,进行计算。

(2)计算长方形面积,再次通过计算的方法说明两块地面积相等。

(3)试一试:计算平行四边形的面积。

3、教学小结。进行推导:

(1)明确研究的要求。

(2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。)

(3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。

(4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。

(5)了解认识、明确:S=a×h,S=a·h或者S=ah。

(6)进行小结。

4、初步运用公式。

(1)教学试一试,(2)练一练。

三、巩固应用

1、练习二“第1题”。

先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的长方形之间联系的认识。这是一个反向建构的过程。

2、练习二“第2题”。

可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。

3、练习二“第3题”。

这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。

4、练习二“第5题”。

让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。

四、课堂总结

今天学习了什么?你有什么收获?(让学生自由发挥。)

教学反思

上述教学设计中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我们认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:

(一)创设生活情境,激发探究欲望

小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学中,教师带领学生选择建房用地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。

(二)重视学生的自主探索和合作学习

动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”在教学中,对传统的平行四边形面积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。令人惊喜的是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……

在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的`。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到"灵感"的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。

(三)培养学生的问题意识

问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:"你能想什么办法自己去发现平行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。

平行四边形的面积教学设计 篇4

教学目标:

1.掌握平行四边形的面积公式,能准确计算平行四边形的面积。

2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。

3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。(现在目标应该写四基四能。)

教学重点:

掌握平行四边形的面积计算公式,能准确解决实际问题。

教学难点:

理解平行四边形面积计算公式的推导方法与过程。

教学准备:

两张格子纸,一张白纸,可变形的平行四边形

教学过程:

一、揭示课题:平行四边形(展示课件课本情景图)

师:同学们在校门口进进出出,有没有发现在这里就有许多我们学过的图形。说说你都发现了那些图形?

生:平行四边形、长方形、圆形。

师:那么我们发现生活中处处有图形,,那么学校里面想对这两块花坛进行规划,在规划之前想比较他们的大小,比较他们的大小其实就是比较他们的什么?(展示单独两个花坛图片)

生:面积(学生回答面积后,马上追问,什么是面积?)

师:什么是面积?

生:面积就是一个图形所占平面的大小。

师:那么我们学过那些图形的面积?

生:长方形和正方形。

师:它们的面积怎么求?

生1:长方形的面积=长×宽

生2:正方形的面积=边长×边长

师板书:长方形的面积=长×宽

师:长方形的面积为什么等于长×宽?咱们是怎样求出来的?

(设计意图:引导学生回忆,数方格计算面积的方法,也就是数小方格的简便运算)

师:长方形的面积我们已经学过,那么平行四边形的面积就是我们这节课要探究的。(板书课题)

二、新授

师:两个花坛不能直接看出他们面积的大小,但是如果老师把两个花坛的图形搬到方格纸中,能不能看出两个花坛哪个花坛的面积可以算出来?(展示方格纸)

生:能

师:怎么看出来?

生1:长方形的面积可以直接数格子数出来24个格子,是24平方米。

生2:长方形的长是6米,宽是4米,利用长方形面积公式:长方形的面积=长×宽=6×4=24。

师:长方形的面积可以直接数出来,那么平行四边形的`面积能不能用数方格的方法,直接数出它的面积呢!

生操作。(拿出1号方格纸,不满一格的都按照半格计算)

师:看看同学们都是怎么数的?

生:20个满格,8个半格,一共24个格,面积是24平方米。

师:平行四边形的面积利用数方格的方法是不是很麻烦?还不是很精确。我们能不能找出一个更好的方法呢?

(引导学生发现计算是最好的方法。设计意图:引导学生发现探索面积公式的必要性。)

猜测一下:平行四边形的面积可能与什么有关?

生:平行四边形的面积=底×高(猜测一下,平行四边的面积可能与什么有关?学生回答后,马上画出平行四边形的底和高,并测量。)

师:平行四边形的面积真的是底×高吗?验证一下。(拿出1号方格纸)找到平行四边形的底是多少?高是是多少?

生1:底是6米。

生2:高是4米。

生3:6×4=24,所以平行四边形的面积是底×高。

师:那么所有的平行四边形的面积都是底×高?数方格的面积是估算出来的,那么我们可以可以精确的算出平行四边形的面积?

(拿出2号方格纸)在方格纸上画一个平行四边形,并计算出平行四边形的面积。

生操作

出示学生的作品,介绍一下是怎么想的。

生1:用拼的方法,拼成一个长方形,再数出面积。

生2:也是拼,剪掉上面的拼下面,剪下面拼上面。

师:刚才他们都用到了一个动词,是什么?(生:拼)

师板书:拼

生4:整块简拼,移到右边。

师:拼的过程其实也是我们数学当中的平移的过程。

师:不管是数格子,还是拼剪的方法,都算出了平行四边形的面积。

3、出示3号白纸,学生自己画一个平行四边形

学生操作,小组讨论。

(此环节是本节课的重点和难点,应该放手让学生小组合作,讨论,并且汇报)

展示学生作品

师:这样的平行四边形要怎样计算面积呢?还能数方格吗?

小组讨论,学生操作剪一剪,拼一拼。

生1:不沿高剪得

生2:先沿平行四边形的高剪开,把剪下来的三角形向右平移,拼在图形的右下方,把图形变成一个长方形,转化成长方形就能计算面积了。

师板书:长方形的面积=长×宽。

师:看来平行四边形的面积和长方形的面积有关系,到底有什么关系呢?

师提醒:观察原来的平行四边形和转化后的长方形,发现它们之间有哪些等量关系?

学生讨论

生1:平行四边形拼成后底成了长方形的长,高成了长方形的宽,长方形的面积是长×宽,所以平行四边形的面积=底×高。

生2:这两个图形的面积是相等的。

师总结:验证成功,平行四边形的面积=底×高

(汇报时引导学生用完善的语言表达,把平行四边形沿着一条高剪开,把剪下的部分平移到平行四边形的另一侧,拼成一个长方形,拼成的长方形与原来的平行四边形面积相等,长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高,因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。学生边汇报,教师边板书)

师板书:平行四边形的面积=底×高

3、如果用字母S表示面积,a表示底,h表示高

你会用字母表示平行四边形的面积吗?

生:S=a×h

利用公式来计算

出示例题1(练习题的设计应先出带图的,再出文字的,体现直观到抽象。)89页第二题可以打在幻灯片上,为了节约时间可以只列式不计算,目的是练熟公式。

拓展练习:

(1)选择题:平行四边形的底是5米,高是4米,它的面积是()

A 20米B 20平方米C 18米D 18平方米

(2)出示图形(强调高和底是相对的)

(3)画出一个底是3cm,高的5cm的平行四边形。

师总结:等底等高的平行四边形面积相等,但是形状不一样。

三、拓展探究

1、展示可以拉伸的平行四边形,演示由平行四边形拉成长方形的过程

师:那么这个平行四边形在拉成长方形时面积发生改变了吗?

学生讨论

学生1:没有改变

学生2:改变

学生辩论

师:周长一样长的平行四边形和长方形,面积不一定也一样。

四、总结

这节课我们学习了什么,回顾整堂课的过程。

用今天的方法还能解决以后的问题,比如说三角形、梯形的面积。

预知后事,自己分晓。

板书设计

新面积不变平行四边形的面积=底×高

拼数

已学(转化)长方形的面积=长×宽

S=a×h

平行四边形的面积教学设计 篇5

教学目标:

1、知识与技能:通过学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。

2、过程与方法:让学生经历尝试探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理培养能力,发展学生的空间观念,渗透转化的思想方法。

3、情感态度与价值观:感受数学源于生活,生活需要数学;带学生体会尝试学习的快感;培养学生的分析、综合、抽象、概括和解决实际问题的能力增强学生学习数学的积极性;感受学习数学的快乐。

重点、难点:

教学重点:掌握平行四边形面积计算公式。

教学难点:平行四边形面积计算公式的推导过程。

教学准备:

教具准备:多媒体课件,平行四边形的图形。

学具准备:剪刀、平行四边形纸片。

教学过程:

一、情境导入

1、通过孙悟空和猪八戒玩拼图,提出数学问题:这两个图形面积相等吗?怎样比较,这就是这节课我们要解决的问题。

2、提出问题:孙悟空家住在村子的东头,可他家的地在村子的西头,猪八戒家住在村子的西头,可他家的地却在村子的东头。太不方便了,怎么办呢?

通过交换土地的想法揭示课题《平行四边形的面积》

【设计意图:教师选取孙悟空和猪八戒拼图的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的`联系,更能激发求知欲望。】

二、自主学习

1.剪一剪,拼一拼。

师:你能自己想办法算出平行四边形的面积吗?请同学们用课前准备好的平行四边形卡片和剪刀剪一剪、拼一拼。(学生动手操作,汇报演示操作成果)

2.探讨联系

师:同学们真棒!很快就把平行四边形转换成了长方形,请同学们认真观察,原来平行√★√四边形的面积、底和高分别与后来长方形的面积、长和宽有什么联系?

(1)学生自主动手操作,探索问题,自己动手把不认识的图形转化成认识的图形。

(2)小组围绕问题讨论交流,引导学生边动手操作边观察。让学生结合图形演示并说明长方形的面积与原来平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

(3)全班汇报交流结果。从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。

3.推导公式

师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积=底×高)

师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

【设计意图:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。】

三、巩固练习

师:现在我们就一起帮孙悟空和猪八戒解决这个问题,可以交换,因为交换是公平的,为了感谢我们,他们带来了几道题。

【设计意图:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识解决问题的过程中体验成功的快乐。】

四、课堂小结

这节课你有什么收获?

【设计意图:使学生回顾、梳理本节课的学习内容。】

平行四边形的面积教学设计 篇6

长方形的面积=长×宽

平行四边形的面积=底×高

S=a×h

S=ah或S=ah

课后记:

第二课时

教学内容:

平行四边形面积计算的练习(P82~83页练习十五第4~8题。)

教学要求:

1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

2.养成良好的审题习惯。

教学重点:

运用所学知识解答有关平行四边形面积的应用题。

教具准备:

展示台

教学过程:

一、基本练习

1、平行四边形的面积是什么?它是怎样推导出来的?

2、.口算下面各平行四边形的面积。

(1)底12米,高7米;

(2)高13分米,第6分米;

(3)底2.5厘米,高4厘米

二、指导练习

1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

(1)生独立列式解答,集体订正。

(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?

①必须知道哪两个条件?

②生独立列式,集体讲评:

先求这块地的面积:250×780÷10000=1.95公顷,

再求共收小麦多少千克:7000×1.95=13650千克

(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?

与⑵比较,从数量关系上看,什么相同?什么不同?

讨论归纳后,生自己列式解答:58500÷(250×78÷1000)

(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

2.(1)练习十五第5题:

1.4厘米

2.5厘米

a、你能找出图中的两个平行四边形吗?

b、他们的面积相等吗?为什么?

c、生计算每个平行四边形的面积。

d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

(2)练习十五6题

让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)

3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。

7m

分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

三、课堂练习

练习十五第7题。

四、作业

练习十五第4题。

课后记:

第三课三角形面积的计算

教学目标:

1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

2.培养学生观察能力、动手操作能力和类推迁移的能力.

3.培养学生勤于思考,积极探索的学习精神.

教学重点:

理解三角形面积计算公式,正确计算三角形的面积.

教学难点:

理解三角形面积公式的。推导过程.

学具准备:

每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

教学过程

一、激发

1.出示平行四边形

1.5厘米

2厘米

提问:

(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)

(2)底是2厘米,高是1.5厘米,求它的面积。

(3)平行四边形面积的计算公式是怎样推导的?

2.出示三角形。三角形按角可以分为哪几种?

3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

教师:今天我们一起研究“三角形的面积”(板书)

二、指导探索

(一)推导三角形面积计算公式.

1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.

2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

3.用两个完全一样的直角三角形拼.

(1)教师参与学生拼摆,个别加以指导

(2)演示课件:拼摆图形

(3)讨论

①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

平行四边形的面积教学设计 篇7

教学内容:

北师大版五年级数学上册第四单元(P53——P55)

教材分析:

本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。

学情分析:

二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。

教学目标:

经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。

掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。

能运用平形四边形的面积计算公式解决相关的问题。

教学重点:

通过操作活动掌握平行四边形的面积的计算方法。

教学难点:

经历推导平行四边形面积公式的过程。

教法学法:

实验探究、推理验证、小组合作学习

教具准备:

课件、剪刀、准备平行四边形若干。

教学过程:

一、开门见山,导入新课

今天我们一起来探索平形四边形的面积。(板书课题)

二、新知探究

1.分析平行四边形给定的3个数据所表示的意义。

2.如何求这个平行四边形的面积,说一说你的想法和理由。

猜想:

(1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。

(2)提出来数方格的。方法来试一试。看选择哪两个数来计算比较好。

3.借助方格纸数一数,比一比

学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的平行四边形放在方格纸上数一数。

要求:

(1)独立完成

(2)小组内交流一下你的想法。

(3)方法展示。

(4)猜想结果:平行四边形的面积等于底乘高。

这只是我们的猜想,那如何来验证我们的猜想是否成立呢?

4.平形四边形如何转化为长方形,验证猜想。

(提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)

(1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。

(2)是不是沿任意一条高剪开都可以拼成长方形呢?

动手操作,验证猜想。

(3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?

生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。

(4)再仔细观察,你还有什么发现?

生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

5.怎样求平形四边形的面积?想一想,与同伴交流

(1)拿着你们组刚才转化的图形再摆一摆,说一说整个操作过程。说一说我们怎样求平行四边形的面积?

(2)你会填吗?

A、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积( ),长方形的长相当于平行四边形的( ),长方形的宽相当于平行四边形的( ),因为长方形的周长=( ),所以平行四边表的面积=( )。

B、如果用S表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:S=( )。

6.计算主题图中的平形四边形的面积。

三、实践应用,巩固与提高。

1.计算下列图形的面积(抢答)

(1)底为4厘米,高为2厘米。

(2)底为5分米,高为9分米

(3)底为3米,高为7米

2.判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等( )

(2)平行四边形底越长,它的面积就越大( )

3.计算下列图形的面积。(单位:厘米)

四、课堂小结。

1.你今天学习了什么?有何收获?

2.在计算平行四边形的面积时,应注意什么?

板书设计:

探索活动:平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

S=ah