《绝对值教案优秀3篇》
作为一名教师,时常需要用到教案,教案是保证教学取得成功、提高教学质量的基本条件。那么应当如何写教案呢?下面是整理的绝对值教案优秀3篇,希望可以启发、帮助到大家。
七年级数学《绝对值》教案 篇1
一、教学目标
1.初步理解绝对值的意义,掌握求有理数的绝对值的方法,并会求有理数的绝对值.
2.利用绝对值解决?些简单的实际问题.
3.使学生初步了解数形结合的思想方法.
4.通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,体会绝对值的意义和作用,感受数学在生活中的价值.
二、教法设计
通过实体模型或问题实例创设学生参与情景,在自主看书寻找问题答案后探求绝对值的意义及应用.
三、教学重点和难点
重点:初步理解绝对值的意义,会求一个有理数的绝对值.
难点:对绝对值意义的初步理解.
四、课时安排
1课时
五、师生互动活动设计
自主、探究、合作、交流.
六、教学思路
(一)、导入
1.教师拿出准备好的数轴模型,让学生观察后摆放在讲台前,叫两个学生站在绳上标有点12、点6的位置,让其他学生观察度量后回答:这两个同学与原点的距离各是多少?
另外叫两个学生分别站在绳上标有点一6、点一12的位置,其他学生观察度量后回答:这两个同学与原点的距离各是多少?
(给学生充分的时间思考,相互讨论、探讨.)
或:创设问题情景
挂出画有数轴的磁性黑板★WWW.BAIHUAWEN.com★,两只小狗分别站在数轴上原点的左、右两侧3个单位的点上,向它离开原点的距离各是多少?(激情引趣,导人新课)
2.概念的引述.
教师引导学生看书自学后,举例说明:什么是一个数的绝对值?如何表示一个数的绝对值?
(叫学生板书)
(学生在自学的基础上,可相互合作、探讨,教师参与学生的讨论,并进行个别指导.)
3.引导学生思考书中“想一想”:互为相反数的两个数的绝对值有什么关系?
(在学生充分思考后,教师要引导学生相互说,并叫5个学生上黑板举例说明这个关系.)
(二)、新知识运用
例1:求下列各数的绝对位:(小黑板示)
0、-7.8、
教师示范一题的解题格式,其余题目由学生独立完成.(培养学生规范化解题的良好习惯)
四、知识拓展
师生互动,先要求学思考、解决,再在组内互相交流.
1.(1)在数轴上表示下列各数:
一1.5、一3、一1、一5.
(2)求出以上各数的绝对值,并比较它们的大小.
(3)你发现了什么?
(培养学生独立思考解决问题的习惯,学会发现问题,总结规律.)
2.如果=3.5,那么
3.
4.字母a表示一个正数,-a表示什么?- a 一定是负数吗?
(字母表示数的意义,为下一章的代数式做准备.)
视学生掌握知识的实际增况开展自编题,编出的题目先在小组内互相交流,再在小组内选出一题在全班交流.
五、小结
1.知识点:
(1)绝对值的定义二
(2)一个数的绝对值与这个数的关系.
2.数学思想方法:数形结合的思想.(培养学生总结能力)
本课设计体现的几个教学理念:
1.既注重学生的全面发展、又重视突出重点.在教学过程中不仅考虑使双基、能力和非智力教学目标的切实实现,而且突出了培养思维能力这个重点,着重培养学生思维的。准确性、深刻性、批判性、创新性等优秀品质.
2.突出了归纳思维方法和学生创新意识的培养.这主要是通过求绝对值的法则的学习过程和“知识拓展”中提出的问题而实现的.
3.学生的自主探索和教师的有效而及时的组织、引导与合作相结合.本课设计者根据初一学生的认和水平,既注重安排他们的自主探究活动,又及时地进行引导、讲解和帮助,这一教学理念贯穿本设计始终.
4.注重教学材料的呈现方式,采用磁性黑板的直观作用和多变而有趣的练习,激发学生的学习兴趣和参与教学活动的积极性,增强了教学的情境性.
5.本课设计者电教手段的应用没有得到体现,只适合硬件条件较差的学校或对新技术手段不熟的教师使用.
七年级数学《绝对值》教案 篇2
教学目标
1.了解绝对值的概念,会求有理数的绝对值;
2.会利用绝对值比较两个负数的大小;
3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.教学建议
一、重点、难点分析
绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有 。
教材上绝对值的'定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
二、知识结构
绝对值的定义 绝对值的表示方法 用绝对值比较有理数的大小
三、教法建议
用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的.初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即
在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的一种直观解释.
此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.
四、有关绝对值的一些内容
1.绝对值的代数定义
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.
2.绝对值的几何定义
在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.
3.绝对值的主要性质
(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零.
(4)两个相反数的绝对值相等.
五、运用绝对值比较有理数的大小
1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。
比较两个负数的方法步骤是:
(1)先分别求出两个负数的绝对值;
(2)比较这两个绝对值的大小;
(3)根据“两个负数,绝对值大的反而小”作出正确的判断.
七年级数学绝对值教案 篇3
一、教学目标
1.初步理解绝对值的意义,掌握求有理数的绝对值的方法,并会求有理数的绝对值。
2.利用绝对值解决?些简单的实际问题。
3.使学生初步了解数形结合的思想方法。
4.通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,体会绝对值的意义和作用,感受数学在生活中的价值。
二、教法设计
通过实体模型或问题实例创设学生参与情景,在自主看书寻找问题答案后探求绝对值的意义及应用。
三、教学重点和难点
重点:初步理解绝对值的意义,会求一个有理数的绝对值。
难点:对绝对值意义的初步理解。
四、课时安排
1课时
五、师生互动活动设计
自主、探究、合作、交流。
六、教学思路
(一)、导入
1.教师拿出准备好的数轴模型,让学生观察后摆放在讲台前,叫两个学生站在绳上标有点12、点6的位置,让其他学生观察度量后回答:这两个同学与原点的距离各是多少?
另外叫两个学生分别站在绳上标有点一6、点一12的位置,其他学生观察度量后回答:这两个同学与原点的距离各是多少?
(给学生充分的时间思考,相互讨论、探讨。)
或:创设问题情景
挂出画有数轴的磁性黑板,两只小狗分别站在数轴上原点的左、右两侧3个单位的点上,向它离开原点的'距离各是多少?(激情引趣,导人新课)
2.概念的引述.
教师引导学生看书自学后,举例说明:什么是一个数的绝对值?如何表示一个数的绝对值?
(叫学生板书)
(学生在自学的基础上,可相互合作、探讨,教师参与学生的讨论,并进行个别指导。)
3.引导学生思考书中“想一想”:互为相反数的两个数的绝对值有什么关系?
(在学生充分思考后,教师要引导学生相互说,并叫5个学生上黑板举例说明这个关系。)
(二)、新知识运用
例1:求下列各数的绝对位:(小黑板示)
、 、0、-7.8、
教师示范一题的解题格式,其余题目由学生独立完成。(培养学生规范化解题的良好习惯)
四、知识拓展
师生互动,先要求学?思考、解决,再在组内互相交流。
1.(1)在数轴上表示下列各数:
一1.5、一3、一1、一5.
(2)求出以上各数的绝对值,并比较它们的大小。
(3)你发现了什么?
(培养学生独立思考解决问题的习惯,学会发现问题,总结规律。)
2.如果=3.5,那么
3.
4.字母a表示一个正数,-a表示什么?- a 一定是负数吗?
(字母表示数的意义,为下一章的代数式做准备。)
视学生掌握知识的实际增况开展自编题,编出的题目先在小组内互相交流,再在小组内选出一题在全班交流。
五、小结
1.知识点:
(1)绝对值的定义二
(2)一个数的绝对值与这个数的关系。
2.数学思想方法:数形结合的思想。(培养学生总结能力)
自我评价
本课设计体现的几个教学理念:
1.既注重学生的全面发展、又重视突出重点。在教学过程中不仅考虑使双基、能力和非智力教学目标的切实实现,而且突出了培养思维能力这个重点,着重培养学生思维的准确性、深刻性、批判性、创新性等优秀品质。
2.突出了归纳思维方法和学生创新意识的培养。这主要是通过求绝对值的法则的学习过程和“知识拓展”中提出的问题而实现的。
3.学生的自主探索和教师的有效而及时的组织、引导与合作相结合。本课设计者根据初一学生的认和水平,既注重安排他们的自主探究活动,又及时地进行引导、讲解和帮助,这一教学理念贯穿本设计始终。
4.注重教学材料的呈现方式,采用磁性黑板的直观作用和多变而有趣的练习,激发学生的学习兴趣和参与教学活动的积极性,增强了教学的情境性.
5.本课设计者电教手段的应用没有得到体现,只适合硬件条件较差的学校或对新技术手段不熟的教师使用。