《勾股定理教案【最新12篇】》
作为一名无私奉献的老师,时常需要编写教案,教案是教学活动的依据,有着重要的地位。我们应该怎么写教案呢?本页是小编帮大家收集的12篇勾股定理教案,希望对大家有一些参考价值。
《勾股定理》教学设计 篇1
一、教案背景概述:
教材分析: 勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终, 让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
教学目标:
1、 经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、 经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、 培养学生学习数学的兴趣和爱国热情。
4、 欣赏设计图形美。
二、教案运行描述:
教学准备阶段:
学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。
三、教学流程:
(一)引入
同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的`边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系)
(二)实验探究
1、取方格纸片,在上面先设计任意格点直角三角形,再以它们的每一边分别向三角形外作正方形,如图1
设网格正方形的边长为1,直角三角形的直角边分别为a、b ,斜边为c ,观察并计算每个正方形的面积,以四人小组为单位填写下表:
(讨论难点:以斜边为边的正方形的面积找法)
交流后得出一般结论: (用关于a、b、c的式子表示)
(三)探索所得结论的正确性
当直角三角形的直角边分别为a 、b,斜边为c时, 是否一定成立?
1、指导学生运用拼图、或正方形网格纸构造或设计合理分割(或补全)图形,去探索本结论的正确性:(以四人小组为单位进行)
在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进行说理:
如图2(用补的方法说明)
师介绍:(出示图片)毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立刻找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立刻对他的这一发现进行了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为"毕达哥拉斯定理"。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。(见课本52页彩图2—1,欣赏图片)
如图3(用割的方法去探索)
师介绍: (出示图片) 中国古代数学家们很早就发现并运用这个结论。早在公元前20xx年左右,大禹治水时期,就曾经用过此方法测量土地的等高差,公元前1100年左右,西周的数学家商高就曾用"勾三、股四、弦五"测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以"形"证"数",形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为"勾股定理"。(点题)
20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。(见课本50页彩图,欣赏图片)
如图4(构造新图形的方法去探索)
师介绍:(出示图片)勾股定理是数学史上的一颗璀璨明珠,它的证明在数学史上屡创奇迹,从毕达哥拉斯到现在,吸引着世界上无数的数学家、物理学家、数学爱好者对它的探究,甚至政界要人——美国第20任总统加菲尔德,也加入到对它的探索证明中,如图是他当年设计的证明方法。据说至今已经找到的证明方法有四百多种,且每年还会有所增加。(若有时间可以继续出示学生中有价值的图片进行讨论),有兴趣的同学课后可以继续探索……
四、总结:
本节课学习的勾股定理用语言叙说为:
五、作业:
1、继续收集、整理有关勾股定理的证明方的探索问题并交流。
2、探索勾股定理的运用。
初中数学《勾股定理》教学设计 篇2
一、教学任务分析
勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《新版数学课程标准》对勾股定理教学内容的要求是:
1、在研究图形性质和运动等过程中,进一步发展空间观念;
2、在多种形式的数学活动中,发展合情推理能力;
3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;
4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、
本节课的教学目标是:
1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、
教学重点和难点:
应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想
根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。
在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。
三、教学过程分析
本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入
情景1:复习提 问:勾股定理的语言表述以及几何语言表达?
设计意图:温习旧知识,规范语言及数学表达,体现
数学的 严谨性和规范性。《勾股定理的应用》教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少?
设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。
第二环节:合作探究(圆柱体表面路程最短问题)
情景3:课本引例(蚂蚁怎样走最近)
设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、
第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)
设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。
第四环节:议一议
内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺:
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
设计意图:
运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、
第五环节:方程与勾股定理
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。
第六环节:交流小结内容:师生相互交流总结:
1、解决实际问题的方法是建立数学模型求解、
2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、
3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。
意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史
第七环作业设计:
第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。
初中数学《勾股定理》教学设计 篇3
一、学生知识状况分析
本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析
本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。具体内容是运用勾股定理及其逆定理解决简单的实际问题。当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:
1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法
1.教学方法
引导—探究—归纳
本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,顺势教学过程;
(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备
教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具
五、教学过程分析
本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
1.3勾股定理的应用:课后练习
一、问题引入:
1、勾股定理:直角三角形两直角边的________等于________。如果用a,b和c表示直角三角形的两直角边和斜边,那么________。
2、勾股定理逆定理:如果三角形三边长a,b,c满足________,那么这个三角形是直角三角形
1.3勾股定理的应用:同步检测
1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )
A.0.7米B.0.8米C.0.9米D.1.0米
2.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米。小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个( )
A.锐角弯B.钝角弯C.直角弯D.不能确定
3.如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15
4.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组。
A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4
《勾股定理》教学设计 篇4
一。教学目标
(一)知识点
1。体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理。
2。会利用勾股定理解释生活中的简单现象。
(二)能力训练要求
1。在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想。
2。在探索勾股定理的'过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力。
(三)情感与价值观要求
1。培养学生积极参与、合作交流的意识。
2。在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气。
二。教学重、难点
重点:探索和验证勾股定理。
难点:在方格纸上通过计算面积的方法探索勾股定理。
三。教学方法
交流探索猜想。
在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系。
四。教具准备
1。学生每人课前准备若干张方格纸。
2。投影片三张:
第一张:填空(记作1.1.1 A);
第二张:问题串(记作1.1.1 B);
第三张:做一做(记作1.1.1 C)。
五。教学过程
Ⅰ。创设问题情境,引入新课
出示投影片(1.1.1 A)
(1)三角形按角分类,可分为_________、_________、_________。
(2)对于一般的三角形来说,判断它们全等的条件有哪些?对于直角三角形呢?
(3)有两个直角三角形,如果有两条边对应相等,那么这两个直角三角形一定全等吗?
关于勾股定理教案 篇5
1.教材的地位和作用
华师大版八年级上直角三角形三边关系是学生在学习数的开方和整式的乘除后的一段内容,它是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个直角三角形三条边之间的数量关�
因此他的教育教学价值就具体体现在如下三维目标中:
知识与技能:
1、经历勾股定理的探索过程,体会数形结合思想。
2、理解直角三角形三边的关系,会应用勾股定理解决一些简单的实际问题。
过程与方法:
1、经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程,由特殊到一般的解决问题的方法。
2、在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力。
情感、态度与价值观:
1、通过对勾股定理历史的了解,感受数学文化,激发学习兴趣。
2、在探究活动中,体验解决问题方法的多样性,培养学生的合作意识和然所精神。
3、让学生通过动手实践,增强探究和创新意识,体验研究过程,学习研究方法,逐步养成一种积极的生动的,自助合作探究的学习方式。
由于八年级的学生具有一定分析能力,但活动经验不足,所以
本节课教学重点:勾股定理的探索过程,并掌握和运用它。
教学难点:分割,补全法证面积相等,探索勾股定理。
要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法:
先从学生熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生自己的课堂。
学法:我想通过“操作+思考”这样方式,有效地让学生在动手、动脑、自主探究与合作交流中来发现新知,同时让学生感悟到:学习任何知识的最好方法就是自己去探究。
1、故事引入新课,激起学生学习兴趣。
牛顿,瓦特的故事,让学生科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。毕达哥拉斯的发现引入新课。
2、探索新知
在这里我设计了四个内容:
①探索等腰直角三角形三边的关系
②边长为3、4、5为边长的直角三角形的三边关系
③学生画两直角边为2,6的直角三角形,探索三边的关系
④三边为a、b、c的直角三角形的三边的关系,(证明)
⑤勾股定理历史介绍,让学生体会勾股定理的文化价值。
体现从特殊到一般的发现问题的过程。
3、新知运用:
①举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用)
②在直角三角形中,已知∠b=90°,ab=6,bc=8,求ac
③要做一个人字梯,要求人字梯的跨度为6米,高为4米,请问怎么做?
④如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”。他们仅仅少走了步路(假设2步为1米),却踩伤了花草。
4、小结本课:
学完了这节课,你有什么收获?
老师补充:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的,我们要多思考。勾股定是数学史上的明珠,证明方法有很多种,我们将在下一节课学习它。
教学设计主要是体现从特殊到一般的知识形成过程,探索问题的设计上有点难,第二个问题应加个3,3为直角边的等腰直角三角形让学生分割或者补全,这样过度,降低3,4为直角边的探索探索;在2,6为直角边时,这个问题可以不用设计进去,就为后面的练习留足时间。探索时间较长,整个课程推行进度较慢,练习较少。
对学生的启发不够,对学生的关注不够,学生对问题的思考不能及时想出来,没有及时很好的引导,启发,应让学生多一些思考的空间,并及时交给思考的方法。学生反应不是太好,能力差,也或许是因为问题设计的较难,没有很好的体现出探究。
预期的目标没有很好的达成,学生虽然掌握了勾股定理,但探索热情没有点燃,思维能力,动手能力,探索精神没有很好的得到发展。
《勾股定理》教学设计 篇6
一、教材分析
勾股定理是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,它揭示了直角三角形三条边之间的数量关系,主要用于解决直角三角形中的计算问题,是解直角三角形的主要根据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”是这本书所体现的主要思想,教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
二、学习目标与任务
1、学习目标描述(知识与技能、过程与方法、情感态度与价值观)
(1)知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
(2)过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
(3)情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
2、学习内容与学习任务说明(学习内容的选择、学习形式的确定、学习结果的描述、学习重点及难点的分析)
学习内容:勾股定理的证明和运用
学习形式:课堂教学,小组合作
学习结果:学生能够掌握勾股定理的证明并熟练运用勾股定理解决相关问题
学习难点:用面积法方法证明勾股定理。
学习重点:引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。
3、问题设计(能激发学生在教学活动中思考所学内容的问题)
(1)图中三个三角形有什么关系?
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
三、学习者特征分析(说明学生的学习特点、学习习惯、学习交往特点等)
(1)学习特点:易受外界影响﹑情绪情感偏激﹑情绪两极波动﹑凭感情行事,但同时又具有可塑性大﹑主动尝试的特点,八年级的学生是成长发展的。转折点,也是教育的关键期。
(2)学习习惯:八年级是初中生活开始分化的时期,经过一年多新课程理念的熏陶和实践,学生已经有了初步自主学习和合作探究的能力。
(3)学习交往特点:经过一年的学习生活,环境熟悉了,人也熟悉了,但部分同学还是羞于表现但又渴望得到肯定。
四、学习环境选择与学习资源设计
1、学习环境选择(打√)
校园网√
因特网
手机
2、学习资源类型(打√)
(1)课件√
(2)工具
(3)专题学习网站
(4)多媒体资源库
(5)案例库
(6)题库
(7)网络课程
(8)宁夏教育云平台
(9)其他
3、学习资源内容简要说明(说明名称、网址、主要内容)
五、学习情境创设
1、学习情境类型(打√)
(1)真实情境√
(2)问题性情境√
(3)虚拟情境
(4)其他
2、学习情境设计
通过真实的教学情境,让学生能够真实感受课堂氛围,通过提问,来激发学生的思考和想象,引导学生对新课程内容进行探究,加深学生的理解和记忆。
六、学习活动组织
1、自主学习设计
类型
相应内容
使用资源
学生活动
教师活动
自主观察
图片
课件
观察图片
播放图片
自主探究
回答问题
课件
讨论并回答啊问题
提出问题
2、协作学习设计
类型
相应内容
使用资源
学生活动
教师活动
(1)伙伴
小组讨论
课件
讨论探究
提出问题并引导
(2)协同
(3)辩论
(4)角色扮演
(5)其他
3、教学结构流程的设计
通过图片导入课程——提出问题引入勾股定理新内容——问题解决进入新课——通过例子验证勾股定理——得出勾股定理——通过习题巩固所学——对课堂进行小结——布置课后作业进一步加强巩固
七、教学过程
教学环节
教师活动
学生活动
设计意图
情景导入
播放图片
观察图片欣赏数学的美
让学生感受勾股定理的文化之美
学习新课
讲解勾股定理
认真听老师讲解
让学生学会勾股定理的证明和运用
巩固练习
提出问题
根据所学解决问题
让学生熟练运用勾股定理
小结
总结本节课所学内容,提问
根据老师的提问回答问题
让学生巩固本节课所学的知识
作业
布置作业
记录作业并认真完成
让学生通过练习对本节课内容更加熟悉
八、学习评价设计
1、测试形式与工具(打√)
(1)课堂提问√
(2)书面练习√
(3)达标测试
(4)学生自主网上测试
(5)合作完成作品
(6)其他
2、测试内容
课堂练习
课后作业
九、板书设计
勾股定理
证明:
设等腰直角三角形的直角边长为a,斜边长为b
蓝色部分面积为:a2
+
a2
橙色部分面积为:b2
已知蓝色面积=橙色面积
所以a2+a2=b2
勾股定理:
如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2
十、教学反思
成功之处:
1、在上课的起始放出图片引起学生的学习兴趣,为新授课做准备。
2、让学生观察图片,找出数学信息,以问题引出新课,学习完新课后让学生回头解决最开始的问题
3、鼓励学生运用多种方法解释图中的面积问题,并引导学生靠近勾股定理。
不足之处: .
1、在图片引导新课的时候只是单纯地让学生看,没有提问他们看到了什么。
2、证明过程讲解没有让学生尝试证明。
需要改进的地方:
1、认真钻研教材,把握教材中各个环节之间的关系,比如说,本节课需要着重把勾股定理的证明进行讲解,学生通过探索和老师的引导得出勾股定理。
2、需学习提问的技巧,争取做到提出一个问题之后,学生能马上明白老师的用意。
备注:此表页码不够可以增加,须排版整洁、美观。
八年级数学《勾股定理》教案 篇7
教学目标:
1、知识目标:
(1)掌握勾股定理;
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史。
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育。
教学重点:勾股定理及其应用
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习
(1)三角形的三边关系
(2)问题:(投影显示)
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得
让学生用文字语言将上述问题表述出来。
勾股定理:直角三角形两直角边 的平方和等于斜边 的平方
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边
(2)学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论。
3、定理的证明方法
方法一:将四个全等的直角三角形拼成如图1所示的正方形。
方法二:将四个全等的直角三角形拼成如图2所示的正方形,
方法三:“总统”法。如图所示将两个直角三角形拼成直角梯形
以上证明方法都由学生先分组讨论获得,教师只做指导。最后总结说明
4、定理与逆定理的应用
例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长。
解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有
∴ ∠2=∠C
又
∴
∴CD的长是2.4cm
例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,
求证:
证法一:过点A作AE⊥BC于E
则在Rt△ADE中,
又∵AB=AC,∠BAC=
∴AE=BE=CE
即
证法二:过点D作DE⊥AB于E, DF⊥AC于F
则DE∥AC,DF∥AB
又∵AB=AC,∠BAC=
∴EB=ED,FD=FC=AE
在Rt△EBD和Rt△FDC中
在Rt△AED中,
∴
例3 设
求证:
证明:构造一个边长 的矩形ABCD,如图
在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF
即
例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分。请你帮助计算一下,哪种架设方案最省电线。
解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为
AD+AB+BC=3,AB+BC+CD=3
图3中,在Rt△DGF中
同理
∴图3中的路线长为
图4中,延长EF交BC于H,则FH⊥BC,BH=CH
由∠FBH= 及勾股定理得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此图中总线路的长为4EA+EF=
∵3>2.828>2.732
∴图4的连接线路最短,即图4的架设方案最省电线。
5、课堂小结:
(1)勾股定理的内容
(2)勾股定理的作用
已知直角三角形的两边求第三边
已知直角三角形的一边,求另两边的关系
6、布置作业:
a、书面作业P130#1、2、3
b、上交作业P132#1、3
7、板书设计:
8、探究活动
台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响
(1)该城市是否会受到这交台风的影响?请说明理由
(2)若会受到台风影响,那么台风影响该城市持续时间有多少?
(3)该城市受到台风影响的最大风力为几级?
勾股定理教案 篇8
在数学课程改革中,基于对数学课程标准基本理念的理解,我从多个方面、不同的角度将课改前后勾股定理的教学进行了对比与研究,以求从中明晰在今后的教学中亟待解决的问题,更加靠近课程改革的具体目标、
一、课程改革前对勾股定理的教学
(一)教学目标
1、使学生掌握勾股定理、
2、使学生能够熟练地运用勾股定理,由已知直角三角形中的两条边长求出第三条边长
(二)教学内容
1、关于勾股定理的数学史:《周髀算经》中出现的“勾广三,股修四,径隅五”
2、给出勾股定理:直角三角形两直角边a,b的平方和,等于斜边c的平方,即a2 + b2 = c2
3、用拼图法推证勾股定理、
4、勾股定理的应用:解决几何计算、作图及实际生产、生活的问题、
二、课程改革后对勾股定理的教学
(一)教学目标
1、认知目标:掌握直角三角形三边之间的数量关系,学会用符号表示、通过数格子及割补等办法探索勾股定理的形成过程,使学生体会数形结合的思想,体验从特殊到一般的逻辑推理过程
2、能力目标:发展学生的合情推理能力,主动合作、探究的学习精神,感受数学思考过程的条理性,让学生经历“观察—猜想—归纳—验证”的数学思想,并感受数形结合和由特殊到一般的思想方法
3、情感目标:通过数学史上对勾股定理的介绍,激发学生学数学、爱数学、做数学的情感,使学生在经历定理探索的过程中,感受数学之美、探究之趣
(二)教学内容
1、在方格纸上通过计算面积的方法探索勾股定理(或设计其他的探索情境)
2、由学生通过观察、归纳、猜想确认勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2 + b2 = c2,即直角三角形两直角边的平方和等于斜边的平方
3、勾股世界:介绍勾股定理的悠久历史、重大意义及古代人民的聪明才智
4、探讨利用拼图法验证勾股定理、
5、勾股定理的实际应用、
三、两种课堂教学的对比
(一)教学理念和教学内容的不同
课改前传统的勾股定理的教学,重在掌握定理和应用定理、这种教学过分突出了勾股定理这一现成几何知识结论的传递和接受,忽略了定理的发现过程、发现方法,导致学生的学习过程被异化为被动接受和单纯的记忆定理、被动认知和机械训练变形及运算技能的过程、这种教学思想的弊病是“重结论而轻过程”,“厚知识运用而薄思想方法”
课改后勾股定理的教学从以下几方面进行:
1、创设探索性的问题情境——学生归纳出直角三角形三边之间的一般规律
2、拼图验证定理——用数形结合的方法支持定理的认识
3、构建数学模型——学生体验由特例归纳猜想、由特例检验猜想
4、解决实际问题——熟练掌握定理,并形成运用定理的技能
5、勾股定理数学史——激发学生的民族自豪感,点燃热爱数学的热情
站在理论的角度,在这种设计中,使学生对知识的实际背景和对知识的直观感知以及学生对收集、整理、分析数学信息的能力等方面得以加强、这充分反映了以未来社会对公民所需的数学思想方法为主线选择和安排教学内容,并以与学生年龄特征相适应的大众化、生活化的方式呈现教学内容、不过,通过实际教学,要想真正的做到“以学生为本”,在短短的两课时内既要重点突出,又能不留死角地圆满完成以上五个层面的学习,也确属不易
(二)教师备课内容的不同
教改前对勾股定理的备课,在把握教材内容的同时,可在勾股定理的数学史和定理应用两方面加以调整、例如,增强民族自豪感:中国古代的大禹就是用勾股定理来确定两地的地势差,以治理洪水;激发学习兴趣:勾股定理的证明方法已有400多种,给出这些证明方法的不但有数学家、物理学家,还不乏政界要人,像美国第20任总统加菲尔德、印度国王帕斯卡拉二世,都通过构造图形的方法给出了勾股定理的别致证法、
定理应用这一课时,教材从纯几何问题、生活问题、生产问题等几方面均有涉及,从提高学生兴趣方面可灵活补充一道11世纪阿拉伯数学家给出的一道趣味题:小溪边长着两棵树,隔岸相望、一棵树高30肘尺(古代长度单位),另一棵高20肘尺,两树的树干间的距离是50肘尺、每棵树的树顶上都停着一只鸟,两只鸟同时看见树间水面上游出的。一条鱼,它们立刻飞去抓鱼,并且同时到到目标、问:这条鱼出现的地方离较高的树的树根有多远?
在实际教学中根据学生的理解情况及实际水平,在训练的形式、数量上与教材也有所区分:增加了一个随堂检测,以巩固所学、由于当时所教班级为数学班,学生整体接受能力较强,就设计了一个请学生自编有关勾股定理应用的题目,效果不错、
教改后的备课,除了在上述两方面有所选择之外,重点放在了探索情境的设置上:利用下面图中的任何一个或几个都可从3个正方形的面积关系中得出直角三角形三边关系,不同的班级可由学生不同的认知水平来设计认识层次、
为了保证教学重点,把利用拼图验证勾股定理的主要探讨放在专门的课题学习中进行
(三)学生学习方式的不同
对于课改前勾股定理的学习,学生沿袭着“接受定理——强化训练——回味体会”的方式、这在一定程度上增强了学生对定理的熟悉程度,并在定理应用上感到运用自如、但这种熟练仅仅是一种强化训练后的暂时现象,知识的本身及其迁移只保持在较短的时间内,不会给学习者留下长久的甚至是终生的印象
很明显,课改后勾股定理的学习是从实际问题到数学问题,再回到实际问题的处理过程,学生眼中的勾股定理来源于熟悉的背景——正方形面积,又用于指导生产、生活、经常用数学的眼光来审视生活,从生活中发现数学,学生才会逐步具有“数学建模”的能力,才能逐步感悟生活的数学性、这不仅是社会发展的需要,同时也是促进学生自身发展的需要、学生学习过程中对定理的探求、现代信息技术的发现及验证过程无时不表现着其学习的主动性,定理的归纳、结论的自我认同又包含着合作与自由发展的和谐共鸣、利用课堂教学、利用教材培养学生良好的学习方式,便塑造了其良好的思维方式,促进了学生和谐、自由、全面、充分的发展
(四)教学效果的不同(见下表)
四、两种教学对比研究的结论
(一)新课程前后的教学各有优势与不足(见下表)
(二)新课程中几何教学需要注意的几个方面
1、探究学习不是简单地布置学生去探究、去学习,教师要发挥主导作用,要让学生明确去探究什么,如何探究,要让学生的探究活动是有效的、有意义的新教材中的很大一部分可采用勾股定理的探究方式:向学生提供探索情境,提出能提供必需信息的问题——学生采用多种方式寻求问题的答案,获取信息——整理、归纳结论——设法验证或解释
2、学生学习过程中的主动参与要在教师指导督促中形成,不能过高估计学生的意志、兴趣、例如,营造一种和谐、民主的课堂气氛来提高全体学生的参与兴趣;帮助学生制订分段式的小目标来增强其成就感,强化其参与意识、
3、避免合作学习流于形式
(1)坚持“组间同质,组内异质”的分组方式,以保证人人有所发展
(2)教师要加强合作技能的指导,指导学生进行小组分工,要求明确各自在完成共同的任务中个人承担的责任
(3)及时协调组内成员间的关系,有效解决组内出现的不利问题
(4)正确评价组内成员的成绩,寻求个人和小集体共同提高的途径
4、要注重教学活动目标的整体实现、新课程中注重对学生学习兴趣的培养、能力的提升,注重知识形成过程的教学,但对一些基本的训练有些淡化,导致整体教学目标不够均衡、为此,在勾股定理的教学中,不但要重过程、方法、能力,还要重视相关的计算和推理,并在计算和推理中学会数学思考,这样才能把“知识技能”、“数学思考”、“问题解决”、“情感态度”多方面教学目标有机结合,达到整体实现教学目标
5、不能忽视双基的教学,要注重学生对基础知识、基本技能的理解和掌握、基础知识不但是学生发展的基础性目标,还是落实数学思想、方法、能力目标的载体、数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系
6、重视合情推理及演绎推理的教学和训练、推理教学要转变并贯穿于数学教学的始终、教学中,教师要设计适当的学习活动,引导学生通过观察、估算、归纳、类比、画图等活动发现一些规律,猜想某些结论,发展合情推理能力、对于几何的教学要加强演绎推理的教学训练,通过实例让学生认识到,结论的正确与否需要演绎推理的证明、当然,不同年级可提出不同的要求,但要慢慢加强,训练不断提高要求,最后形成较高的演绎推理能力
证明勾股定理的优秀教案 篇9
一。说教材
本课时是华师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。 勾股定理是我国古数学的一项伟大成就。勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。 据此,制定教学目标如下: 1.知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。 2.过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。 3.情感与态度目标:感受数学在生活中的应用,感受数学定理的美。 教学重点:勾股定理的应用。 教学难点:勾股定理的正确使用。 教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。
二。说教法和学法
1.以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。 2.切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。 3.通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。
三。教学程序
本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下: 一。回顾问:勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用。 二。新授课例1.如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14.2.1)
①学生取出自制圆柱,尝试从A点到C点沿圆柱侧面画出几条路线。思考:那条路线最短? ②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗? ③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?
思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”。 学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2.(课本P58图14.2.3) 思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出
2.3m
CD= = =0.6,CH=0.6+2.3=2.9>2.5可见卡车能顺利通过 .详细解题过程看课本 引导学生完成P58做一做。 三。课堂小练 1.课本P58练习第1,2题。 2.探究: 一门框的尺寸如图所示,一块长3米,宽2.2米的薄木板是否能从门框内通过?为什么?
四。小结直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。
五。布置作业 课本P60习题14.2第1,2,3题。
《勾股定理》教学设计 篇10
教学目标
一、知识与技能
1.掌握直角三角形的判别条件。
2.熟记一些勾股数。
3.掌握勾股定理的逆定理的探究方法。
二、过程与方法
1.用三边的数量关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想。
2.通过对Rt△判别条件的研究,培养学生大胆猜想,勇于探索的创新精神。
三、情感态度与价值观
1.通过介绍有关历史资料,激发学生解决问题的愿望。
2.通过对勾股定理逆定理的探究;培养学生学习数学的兴趣和创新精神。
教学重点探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的有关概念及关系.理解并掌握勾股定理的逆定理,并会应用。
教学难点理解勾股定理的逆定理的推导。
教具准备多媒体课件。
教学过程
一、创设问属情境,引入新课
活动1
(1)总结直角三角形有哪些性质。
(2)一个三角形,满足什么条件是直角三角形?
设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力。
师生行为学生分组讨论,交流总结;教师引导学生回忆。
本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”。
生:直角三角形有如下性质:
(1)有一个角是直角;
(2)两个锐角互余;
(3)两直角边的平方和等于斜边的平方;
(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半。
师:那么,一个三角形满足什么条件,才能是直角三角形呢?
生:有一个内角是90°,那么这个三角形就为直角三角形。
生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形。
师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?
二、讲授新课
活动2
问题:据说古埃及人用下图的'方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。
这个问题意味着,如果围成的三角形的三边分别为3、4、5。有下面的关系“32+42=52”。那么围成的三角形是直角三角形。
画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.
设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法。
师生行为让学生在小组内共同合作,协手完成此活动。教师参与此活动,并给学生以提示、启发。在本活动中,教师应重点关注学生:①能否积极动手参与;②能否从操作活动中,用数学语言归纳、猜想出结论;③学生是否有克服困难的勇气。
生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52。我们围成的三角形是直角三角形。
生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.
再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.
是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?
活动3下面的三组数分别是一个三角形的三边长a,b,c
5,12,13;7,24,25;8,15,17。
(1)这三组效都满足a2+b2=c2吗?
(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
设计意图:本活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的有关边的条件。
师生行为:学生进一步以小组为单位,按给出的三组数作出三角形,从而更加坚信前面猜想出的结论。
教师对学生归纳出的结论应给予解释,我们将在下一节给出证明.本活动教师应重点关注学生:①对猜想出的结论是否还有疑虑;②能否积极主动的操作,并且很有耐心。
生:(1)这三组数都满足a2+b2=c2。(2)以每组数为边作出的三角形都是直角三角形。
师:很好,我们进一步通过实际操作,猜想结论。
命题2如果三角形的三边长a,b,c满足a2+b2=c2那么这个三角形是直角三角形。
同时,我们也进一步明白了古埃及人那样做的道理.实际上,古代中国人也曾利用相似的方法得到直角,直至科技发达的今天。
证明勾股定理的优秀教案 篇11
一、素质教育目标
(一)知识教育点
1、用验证法发现直角三角形中存在的边的关系。
2、掌握定理证明的基本方法。
(二)能力训练点
观察和分析直角三角形中,两边的变化对第三边的影响,总结出直角三角形各边的基本关系。
(三)德育渗透点
培养学生掌握由特殊到一般的化归思想,从具体到抽象的思维方法,以及化归的思想,从而达到从感性认识到理性认识的飞跃;又从一般到特殊,从抽象到具体,应用到实践中去。
二、教学重点、难点及解决办法
1、重点:发现并证明勾股定理。
2、难点:图形面积的转化。
3、突出重点,突破难点的办法:《几何画板》辅助教学。
三、教学手段 :
利用计算机辅助面积转化的探求。
四、课时安排:
本课题安排1课时
五、教学设想:
想培养学生的思维能力,为学生提供一个丰富的思维空间,使学生能够根据“式,数、形”等不同的结构从不同的角度去分析问解决问题
六、教学过程(略)
《勾股定理》优秀教案 篇12
一、教学目标
(一)教学知识点
1、掌握勾股定理,了解利用拼图验证勾股定理的方法、
2、运用勾股解决一些实际问题、
(二)能力训练要求
1、学会用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力、
2、在拼图过程中,鼓励学生大胆联想,培养学生数形结合的意识、
(三)情感与价值观要求
利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献、借助对学生进行爱国主义教育、并在拼图的过程中获得学习数学的快乐,提高学习数学的兴趣、
二、教学重、难点
重点:勾股定理的证明及其应用、
难点:勾股定理的证明、
三、教学方法
教师引导和学生自主探索相结合的方法、
在用拼图的方法验证勾股定理的过程中、教师要引导学生善于联想,将形的问题与数的问题联系起来,让学生自主探索,大胆地联系前面知识,推导出勾股定理,并自己尝试用勾股定理解决实际问题、
四、教具准备
1、每个学生准备一张硬纸板;
2、投影片三张:
第一张:问题串(记作1、1、2 A);
第二张:议一议(记作1、1、2 B);
第三张:例题(记作1、1、2 C)。
五、教学过程
Ⅰ、创设问题情景,引入新课
[师]我们曾学习过整式的运算,其中平方差公式(a+b)(a—b)=a2—b2;完全平方公式(ab)2=a22ab+b2是非常重要的内容、谁还能记得当时这两个公式是如何推出的?
[生]利用多项式乘以多项式的法则从公式的左边就可以推出右边、例如(a+b)(a—b)=a2—ab+ab—b2=a2—b2,所以平方差公式是成立的。
[生]还可以用拼图的方法来推出、例如:(a+b)2=a2+2ab+b2、我们可以用一个边长为a的正方形,一个边长为b的正方形,两个长和宽分别为a和b的长方形可拼成如下图所示的边长为(a+b)的正方形,那么这个大的正方形的面积可以表示为(a+b)2;又可以表示为a2+2ab+b2、所以(a+b)2=a2+2ab+b2。