《有理数的乘法教学设计(整理【优秀3篇】》
有理数的减法教案 篇1
教学目标
1、 会把有理数的加减法混合运算统一为加法运算;
2、 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;
3.进一步感悟“转化”的思想
教学重点
把有理数的加减法混合运算统一为加法运算
教学难点
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变
教学过程
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算
1、完成下列计算:
(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4)
归纳: 根据有理数的减法法则,有理数的`加减混合运算可以统一为 运算;
(2)式统一成加法是________________________________;
省略负数前面的加号和( )后的形式是______________________;
读作____________________ 或 _______________________
展示交流
1、把下列运算统一成加法运算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3) 2+5-8=_________________________________;
(4) 14-(-12)+(-25)-17=_____________________________________
2、 将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
(2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)= ____________________________
3、将下列运算先统一成加法,再省略加号:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________
4、 仿照本P37例6,完成下列计算:
(1) -4-5+6 ; (2) -23+41-24+12-46
5、 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?
盘点收获
个案补充
课堂反馈
1.计算:
2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?
迁移创新
一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?
课堂作业
本P39 习题2 。5第6题(1)、 (3)、(5), 第7题 。
初中数学《有理数的乘法》教学设计 篇2
一、知识与能力
掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力
二、过程与方法
经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算
三、情感、态度、价值观
培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性
四、教学重难点
一、重点:熟练进行有理数的乘除运算
二、难点:正确进行有理数的乘除运算
预习导学
通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律
五、教学过程
一、创设情景,谈话导入
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律
二、精讲点拨质疑问难
根据预习内容,同学们回答以下问题:
1、有理数的乘法法则:
(1)同号两数相乘___________________________________
(2)异号两数相乘___________________________________
(3)0与任何自然数相乘,得____
2、有理数的乘法运算律:
(1)乘法交换律:ab=_________
(2)乘法结合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3、有理数的除法法则:
除以一个不等于0的数,等于乘这个数的__________
比较有理数的乘法,除法法则,发现_________可能转化为__________
有理数的减法教案 篇3
1.有理数加法法则:
⑴如果a0,b0,那么a+b=+(│a│+│b│);⑵如果a0,b0,那么a+b=-(│a│+│b│);
⑶如果a0,b0,│a││b│,那么a+b=+(│a│-│b│);
⑷如果a0,b0,│a││b│,那么a+b=-(│b│-│a│);
⑸如果a0,b0,│a│=│b│,那么a+b=0; ⑹a+0=a.
2、有理数减法法则:a-b=a+(-b)
33、 两数相加,如果比每个加数都小,那么这两个数是( )
A.同为正数 B.同为负数 C.一个正数,一个负数 D.0和一个负数
34、在数轴上表示的数8与-2这两个点之间的距离是 ( )
A.6 B.10 C.-10 D.-6
35、计算:
3、有理数乘法法则:
⑴如果a0,b0,那么ab=+(│a││b│);⑵如果a0,b0,那么ab= +(│a││b│);
⑶如果a0,b0,那么ab=- (│a││b│);⑷a0=0.
4、有理数除法法则:ab=a
5、有理数的乘方:
求 的积的运算,叫做有理数的乘方。即:an=aaa(有n个a)
从运算上看式子an,可以读作 ;从结果上看式子an可以读作 。
6、有理数混合运算顺序:
⑴
⑵
⑶
36、 两个非零有理数的和为零,则它们的商是( )
A.0 B.-1 C.+1 D.不能确定
37、一个数和它的倒数相等,则这个数是( )
A.1 B.-1 C. 1 D. 1和0
38、 (-2)11+(-2)10的值是( )
A.-2 B.(-2)21 C.0 D.-210
39、 下列说法正确的是( )
A.如果ab,那么a2b2 B.如果a2b2,那么ab
C.如果│a││b│,那么a2b2 D.如果ab,那么│a││b│
40、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.
41、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.
42、 1-2+3-4+5-6++2001-2002的值是____________.
43、 已知│a│=3,b2=4,且ab,求a+b的值。
44、计算:
七。科学记数法、近似数及有效数字
⑴把一个大于10的数记成a 10n的形式(其中a是整数数位只有一位的数),叫做科学记数法。
⑵对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
45、 用科学记数数表示:1305000000= -1020= 。
46、 120万用科学记数法应写成 2.4万的原数是 。
47、 近似数3.5万精确到 位,有 个有效数字。
48、 近似数0.4062精确到 位,有 个有效数字。
49、 5.47105精确到 位,有 个有效数字
50、 3.4030105保留两个有效数字是 ,精确到千位是 。
51、 用四舍五入法求30951的近似值(要求保留三个有效数字),结果是