首页 > 教学教案 > 教学设计 > 七年级数学下册教学设计优秀6篇正文

《七年级数学下册教学设计优秀6篇》

时间:

在我们上学期间,大家对知识点应该都不陌生吧?知识点在教育实践中,是指对某一个知识的泛称。还在为没有系统的知识点而发愁吗?的小编精心为您带来了七年级数学下册教学设计优秀6篇,如果对您有一些参考与帮助,请分享给最好的朋友。

最新七年级数学下册教案人教版例文 篇1

教学目标

1.理解和掌握倒数的意义。

2.能正确的求出一个数的倒数。

3.培养学生的观察能力和概括能力。

教学重点

认识倒数并掌握求倒数的方法

教学难点

小数与整数求倒数的方法

教学过程

一、基本训练

(一)口算

=

上面各式有什么特点?

还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

(板书:乘积是1,两个数)

二、引入新课

刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

(板书:倒数)

三、新课教学

(一)乘积是1的两个数存在着怎样的倒数关系呢?

请看: ,那么我们就说 是 的倒数,反过来(引导学生说) 是 的倒数,也就是说 和 互为倒数。

和 存在怎样的倒数关系呢?2和 呢?

(二)深化理解

教师提问

1.什么是互为倒数?

2.怎样理解这句话?(举例说明)

( 的倒数是 , 的倒数是 ,……不能说 是倒数,要说它是谁的倒数。)

3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如 , ,……但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作 ,1与 相乘还是1,符合倒数的意义,所以1的倒数是1)。

(三)求一个数的倒数

1.例:写出 、 的倒数

学生试做讨论后,教师将过程板书如下:

所以 的倒数是 , 的倒数是 .

(能不能写成 ,为什么?)

总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

2.深化

你会求小数的倒数吗?(学生试做)

三、训练、深化

(一)下面哪两个数互为倒数

(演示课件:倒数的认识1)

(二)求出下面各数的倒数

(演示课件:倒数的认识2)

(三)判断

1.真分数的倒数都是假分数。( )

2.假分数的倒数都小于1.( )

3.0没有倒数。( )

(四)提高

如果末尾加上=1怎么填?

如果末尾加上=0怎么填?

如果末尾加上=2怎么填?

四、课堂小结

今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?

五、课后作业

(一)下面哪两个数互为倒数?

(二)写出下面各数的倒数。

六、板书设计

最新七年级数学下册教案人教版例文 篇2

教学目标

1.使学生受到初步的辩证唯物主义观点的教育。

2.使学生学会并掌握“按比例分配”应用题的解答方法,掌握“比例分配”问题的特征,能熟练地计算。

教学重点和难点

把比转化成分数。

教学过程设计

(一)复习准备

2.甲数与乙数的比是4∶5。

①甲数是乙数的几分之几?

②乙数是甲数的几分之几?

③甲数是甲、乙总数的几分之几?

④乙数是甲、乙总数的几分之几?

3.出示投影图:

师:看到此图你能想到什么?

学生说,老师写在胶片上:

①女生与男生的比是3∶2。

②男生与女生的比是2∶3。

4.某生产队运来60吨化肥,平均分给5个小队。每个小队分到多少吨?

60÷5=12(吨)

这种解答的方法,在算术上叫什么方法?

刚才我们解题的方法叫平均分配的方法,在工农业生产和日常生活中应用很广泛,而且这种方法你们早已比较熟悉,也经常用它解决一些实际问题。但有些事情,用这种方法就行不通了。

如:你们单元住着18家,每月交的水电费能平均分配吗?

又如:国家搞绿化建设,能把绿化任务平均分配给各单位吗?

比如生产队的土地,也要根据国家计划,合理安排种植,不能想种什么就种什么,所有这些,都需要把一个数量按照一定的“比”进行分配,这样的分配方法叫“按比例分配”。(板书课题)

(二)学习新课

1.出示例题。

例1 第四生产队计划把400公顷地按照3∶2的比例播种粮食作物和经济作物。粮食作物和经济作物各种多少公顷?

学生读题,分析题中的条件与问题,教师把条件与问题简写出来:

然后再让学生带着三个问题去思考。

(1)两种作物一共几份?怎样求?

(3)400公顷是总数,要求的两种作物各种多少公顷?怎样计算?

分析:①用一个长方形表示全部土地。(画图)

②根据粮、经之比是3∶2,你知道什么意思?(粮3份,经2份。)

师边说边把长方形平均分成5份,其中3份标粮,其中2份标经。

观察:①从图上看,把全部土地平均分成几份?你怎么算出来的?

(板书)总份数:                3+2=5

3∶2,实质都表示倍数关系。现在这道题能够解决了。

粮食作物多少公顷?怎么算?

经济作物多少公顷?怎么算?

验算:①求总数     240+160=400

②求比      240∶160=3∶2

答:粮食作物240公顷,经济作物160公顷。

(附图)

这道题就是“按比例分配”的问题。解决这个问题的关键是:首先

多少。

师归纳:问题通过分析得到解决,又经过验算证明方法正确,从这道题可以悟出解答“按比例分配”应用题的规律为:

已知两个数的和与两个数的比,把两个数的比转化成各占几分之几,然后按“求一个数的几分之几是多少用乘法”的方法解答。

2.试一试。

抓住主要矛盾练习,运用规律解决问题。

把45棵树苗分给两个中队,使两个中队分得的树苗的比是4∶5,每个中队各得几棵树苗?

总份数是几?怎么算?一中队占几分之几?二中队占几分之几?

①总份数  4+5=9

验算:①总棵树     20+25=45(棵)

②比       20∶25=4∶5

答:一中队得20棵,二中队得25棵。

(三)巩固反馈

1.某工厂有职工1800人,男女职工人数比是5∶4,求男女职工各多少人?

2.沙子灰是灰和沙子混合而成的,它们的比是7∶3。要用280吨沙子灰,则灰和沙子各需多少吨?

3.图书馆买来160本儿童故事书,按1∶2∶3分给低、中、高年级同学阅读。低、中、高年级各分到多少本?

以上三题只列出主要算式即可。

4.学校把560棵的植树任务,按照五年级三个班人数分配给各班。一班47人,二班45人,三班48人。三个班级各植树多少棵?

分析条件、问题以后让学生讨论:

①三个班植树的总棵树是几?

②题目要求按什么比?人数比是几比几?

③三个数的和及三个数的比知道后,根据“按比例分配”的规律,怎样计算这道题?

试着让学生在本上做,老师巡视,然后把方法集中到黑板上。(找用不同方法计算的学生板演。)

5.有一块试验田,周长200米,长与宽的比是3∶2。这块试验田的面积是多少平方米?

(这道题给了长与宽的比是3∶2,指的是一个长与一个宽的比,而周长包括2个长和2个宽,因此先求出一个长宽的和,即200÷2,然后把100按3∶2去分配。)

6.看图编一道按比例分配题解答。

7.水是由氢和氧按1∶8的重量比化合而成的。5.4千克的水中含氢、氧各多少千克?(看谁用的方法多。)

方法1

8+1=9

方法2

5.4÷9=0.6(千克)

0.6×1=0.6(千克)

0.6×8=4.8(千克)

方法3

方法4

5.4÷(8+1)=0.6(千克)

0.6×8=4.8(千克)

方法5

解:设氢为x千克。

5.4-x=8x

5.4=9x

x=0.6

5.4-x

=5.4-0.6

=4.8

方法6

解:设氧为x千克。

x=(5.4-x)×8

x=43.2-8x

9x=43.2

x=4.8

5.4-x

=5.4-4.8

=0.6

以上方法4,5,6要写全过程。

(四)布置作业

(略)

课堂教学设计说明

1.通过复习,使学生认识到比与分数是有联系的。

2.讲授新课时,先讲了一个最一般的按比例分配题,练习1~3题以后出现另一种形式的按比例分配题,这里老师采用讲练结合的方法。最后让学生用多种方法解答一道题,从而让学生认识到整数、分数、比和比例这些知识的内在联系,使学生明确,当题中给出比的条件时,可以直接用比例的知识解题,也可以根据整数、分数、比和比例之间的联系,把比所表示的两个数量之间的关系用分数、整数之间的关系来表示,并解答题。但是由于分析的思路不同,解答的方法也不同。不管学生采用哪种方法解答,老师都要加以肯定,并鼓励学生采用多种方法解答。

板书设计

七年级数学下册教案 篇3

教学目标:

(一)知识目标:

1、探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、

2、理解运算法则及在乘法中对系数运算和指数运算的`不同规定、

(二)能力目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、

(三)情感目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、

教学重点:

探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、

教学难点:

理解运算法则及在乘法中对系数运算和指数运算的不同规定、

教学过程:

导入新课:

为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画、

受他的启发,京京用两张同样大小的纸,精心制作了两幅画;第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x米的空白、

想一想:

(1)对于上面的画面小明得到如下的结果:

第一幅画的画面面积是x(mx)米2、

第二幅画的画面面积是(mx)(x)米2、

他的结果对吗?可以表达得更简单些吗?说说你的理由、

(2)类似地,3a2b2ab3和(xyz)y2z可以表达得更简单些吗?为什么?

(3)如何进行单项式与单项式相乘的运算?

教师应鼓励学生运用乘法交换律、结合律和同底数幂的运算性质等知识的运算法则,并要求他们说明运算的道理,鼓励学生自己总结单项式与单项式相乘的运算法则、

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

七年级数学下册教学设计 篇4

二元一次方程组是一元一次方程教学的延续与深化。很多一元一次方程应用题均可用二元一次方程组来解决而得以简化,如:数学课外兴趣小组成员去建设工地参加实践活动,男同学戴白色安全帽,女同学戴红色安全帽,在每个男同学看来,红白安全帽一样多,而在女同学看来,白色安全帽是红色安全帽的2倍,问男女同学各是多少名?——这个问题若用一元一次方程来解,有两种解法:(1)可设男同学x名,则女同学(x—1)名,根据“男同学人数=2(女同学人数—1)”这个等量关系可列方程:x=2×[(x—1)—1];(2)设女同学y名,则男同学2(y—1)名,根据“男同学人数—1=女同学人数”这个等量关系可列方程:2(y—1)—1=y。如此解决问题比较“绕”,数学的特点是“趋简”、“趋明了”,于是促生了“寻找另外的简捷的办法”的欲望。

由于本题有两个等量关系:男同学人数=2(女同学人数—1)、男同学人数—1=女同学人数;两个未知数:男生人数、女生人数,如果设男生x人,女生y人,可以得到两个方程:(1)x—1=y,(2)x=2(y—1),要解决这个问题,就须寻找满足两个方程的x、y值,于是就延伸到了解二元一次方程组的问题。

由于学生已经学会了用一元一次方程解决这个问题,一旦提及求二元一次方程组的解,学生自然会隐隐约约地想到它们之间必然存在某种联系,于是引导学生观察、联系、联想,可以“化归”为一元一次方程解决这个问题:

从而实现问题的解决。

课程结束后,还要引导学生对所学知识进行升华:列一元一次方程解应用题,与列二元一次方程组解应用题,有什么特点?学生们经过思考争辩,最终达成如下意见即可视为完成教学任务:(1)列一元一次方程时,需要将其中的一个量用含有另一个量的式子表示出来,也就是说,寻找相等关系容易,列方程要相对困难一些。(2)列二元一次方程组时,只要找出相等关系(2个)设未知数(2个),就可以较容易地列出方程组,所以列方程(组)相对简单,而解方程组要难一些,顺着这种感觉,可以引导学生研究如何便捷地解方程组就成为当务之急了。

七年级数学下册教案 篇5

教学目标:

知识目标:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

能力目标:进一步培养学生分析、归纳和探索能力。

情感目标:培养学生数形结合的思想。

教学重难点:公式的应用及推广。

教学过程:

一、复习提问:

1.(1)用较简单的代数式表示下图纸片的面积.

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。

讲评要点:

沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=ab,

这样裁开后才能重新拼成一个矩形。

(3)比较(1)(2)的结果,你能验证平方差公式吗?

学生讨论,自己得出结果

2.(1)叙述平方差公式的数学表达式及文字表达式;

(2)试比较公式的两种表达式在应用上的差异.

说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的。a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.

3.判断正误:

(1)(4x+3b)(4x3b)=4x23b2;(×)(2)(4x+3b)(4x3b)=16x29;(×)

二、新课:

运用平方差公式计算:

(1)102×98;(2)(y+2)(y2)(y2+4).

填空:

(1)a24=(a+2)();(2)25x2=(5x)();(3)m2n2=()();

思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?

七年级数学下册教学设计 篇6

教学目标

掌握幂的乘方法则,并能够运用法则进行计算。

会进行简单的幂的混合运算。

在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。

让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

重点难点

重点

幂的乘方法则的运用。

难点

幂的乘方法则的推导以及幂的混合运算。

教学过程

一、复习导入

1.表示什么意义?表示什么意思呢?

2.同底数幂乘法法则是什么,它是怎样推导的?

通过讨论,使学生正确读出式子并理解式子所表达的运算,指出这种式子表达的是幂的乘方运算,怎样进行幂的乘方运算呢?

二、新课讲解

探究新知

1.思考:

①请根据的意义计算出它的结果,并想一想每一步计算的依据是什么?

②你能说出、的意义吗?

③请你计算、,并想一想每一步计算的依据是什么?

(鼓励学生站起来回答,培养学生数学表达的能力)

2.发现:

①从上面的计算中你发现了这几道题的运算结果有什么共同之处吗?从中你能发现运算的方法吗?猜一猜的结果是什么?

②验证猜想,得出结论

===(m,n都是正整数)

用语言叙述为:幂的乘方,底数不变,指数相乘。

三、典例剖析

例1计算:

(1);(2);(3)(m是正整数);(4)(n是正整数)

要求学生读出式子并按法则运算,提高符号演算的能力。注意(2)应读成a的3次幂的4次方的相反数(或者-1乘以a的3次幂的4次方),强调求相反数是运算的最后一步,训练学生在计算式子前先正确理解式子的良好习惯。

例2计算:

学生独立思考后进行交流,交流时要求学生按照先读式子,再分析式子的步骤给全班同学讲解。重视数学的表达和交流能促进学生养成良好的思维能力和思维习惯。

四、课堂练习

基础练习

1.填空:

(1);(2);

2.下面的计算对不对?如果不对,应怎样改正?

教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因,(1)是混淆了幂的乘法运算,(2)是把两个指数理解成了3的2次方。强调正确记忆法则,仔细分析式子里的运算。

提高训练:

3.对比同底数幂的乘法法则和幂的乘方法则,你有好的方法来记忆吗?

引导学生观察两种运算的共同点。幂的这两种运算最终都转化成了对指数的运算,其中幂的乘法转化成了指数的加法,幂的乘方转化成了指数的乘法,初一看两个法则截然不同,但从转化的角度来看,它们又有共同之处,那就是都将原来的幂的运算降了一级,乘法变了加法,乘方变了乘法。

4.自编两道同底数幂的乘法、幂的乘方混合运算题,并与同学交流计算过程与结果。

学生活动后,教师选取编的好的题向全班展示,提高学生的兴趣。

5.已知,求的值。

逆向运用幂的运算性质,能培养学生思维的灵活性。由,我们不能求出m,n的值,但我们可以从入手,观察到,从而可以通过整体代入来求解。

五、小结

师生共同回顾幂的运算法则,互相交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

1.P40第2题

2.自编两道同底数幂的乘法、幂的乘方混合运算题,并计算。