《平行四边形的面积公式教学设计优秀8篇》
教学目标:1、 使学生理解并掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。2、 培养学生初步的逻辑思维能力及空间观念。3、 渗透转化的数学思想,培养学生的创造意识。教学重点:理解并掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。教学难点:掌握平行四边形面积的推导方法教学过程(www。fwsir。com):一、 复习长正方形的面积,渗透转化思想 1、复习长方形、正方形面积公式提问:(1)我们已经学过了哪些平面图形的面积?(2)怎样计算? s=a×b s=a×a 2、以下是人见人爱的小编分享的平行四边形的面积公式教学设计优秀8篇,您的肯定与分享是对小编最大的鼓励。
平行四边形的面积教学设计 篇1
[教学目标]
1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
[教学重点、难点]
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
[教具、学具准备]
多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。
[教学过程]
一、复习旧知,导入新课。
1、让学生回顾以前学习了哪些平面图形。老师根据学生的回答,依次出示相应的图形。
2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。
师板书:长方形的面积=长×宽
师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。
二、动手实践,探究发现。
1、剪拼图形,渗透转化。
(1)小组研究
老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。
(2)汇报结果
第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。
板节课题:平行四边形面积计算
2、动手实践,探究发现。
(1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?
(2)学生重新剪拼,互相探讨。
(3)汇报讨论结果。
师板书:平行四边形的面积=底×高
(4)让学生齐读:平行四边形的面积等于底乘以高。
(5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?
(必须知道平行四边形的底和高)
课件展示讨论题:平行四边形的底和高是否相对应。
(6)总结平行四边形面积的字母代表公式:S=ah(师板书S=ah)
(7)比较研究方法。
三、分层训练,理解内化。
课件显示练习题
第一层:基本练习
第二层:综合练习
第三层:扩展练习
下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?
四、课堂小结,巩固新知
小结:这节课我们学习了什么?你学会了什么?
《平行四边形的面积》五年级数学教案 篇2
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:
理解公式并正确计算平行四边形的面积.
教学难点:
理解平行四边形面积公式的推导过程.
学具准备:
每个学生准备一个平行四边形。
教学过程:
一、导入新课。
1.请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?
2.好,下面谁来说一说你找到了哪些学过的图形?
3.请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学平行四边形面积计算。
二、民主导学
(一)数方格法
用展示台出示方格图
1.这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2.这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3.请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
动手实践,推导公式 篇3
①实践操作
教师启发谈话,如果要求在实际生活中平行四边形的面积,经常用数方格这种方法方便吗?这就需要寻找一种更简单的方法。那么平行四边形的面积到底与什么有关?再通过出示:当平行四边形的高不变,它的面积随着底边的缩小而缩小,说明平行四边形的面积与底有关;当平行四边形的底不变,它的面积随着高的缩小而缩小,也说明了平行四边形的面积与高有关。我们已学过了长方形和正方形的面积计算公式,能不能根据已掌握的知识来解决新知,求出平行四边形的面积呢?然后让学生实践操作,想办法把平行四边形转化成长方形。要鼓励学生多角度思考问题,再通过合作交流,能想出各种方法将平行四边形转化成长方形。
让学生通过动手操作拓展了学生思维的空间,这样不仅强化平移转化方法在实际中的应用,也大大提高了学生运用已有知识解决)●(实际问题的能力,注重了知识的获得过程。
②归纳方法
提问:剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?
在这个环节中主要采用了动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。
说教法 篇4
本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。
在本节课中,我还力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。
在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。
在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。
教学重点、难点及关键点剖析: 篇5
通过实践――理论――实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。
巩固运用 篇6
1.练习十五第1题,让学生独立完成后反馈答案。
2.你会计算下面平行四边形的面积吗?
3.你能想办法求出下面平行四边形的面积吗?
4.练习十五第3题。
.猜谜游戏: 篇7
有一个平行四边形,它的面积是12平方分米,请你猜一猜它的底和高各应是多少分米?看谁猜出的答案最多。
并说明等以后学习了分数乒,还会有更多的答案。
.思考题 篇8
用铁丝围一个右图这样的平行四边形,至少需要用多长的铁丝?
(单位:厘米)